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Abstract

Understanding the mechanical dynamics within the Earth’s crust is crucial for both environmen-
tal and energy sustainability. These dynamics are often tied to mechanical deformations triggered
by variations in fluid pressure and stress levels. The primary method of investigation involves seis-
mic monitoring to detect changes in material properties and identify fractures or faults, making the
study of the relationship between seismic properties, fluids, and fractures essential.

My research utilizes a combination of laboratory experiments, numerical simulations, and field
observations to enhance our understanding of the mechanisms behind seismic variations, includ-
ing changes in wavespeeds, attenuation, and the behavior of laboratory and natural earthquakes.
My thesis is divided into two interrelated parts: (1) the influence of fluids and/or deformation on
seismoacoustic wavespeed and attenuation, and (2) the effect of fluid properties and pressure on
fracture behavior and seismoacoustic signals.

In the first part, I develop wavelet-domain techniques for analyzing frequency-dependent veloc-
ity changes through coda wave interferometry and delve into the depth sensitivity of these changes
using wavefield simulations. I also employ controlled acoustic monitoring and 3D-printed media to
examine how various physical conditions, such as consolidation, saturation, and strain deformation,
affect frequency-dependent velocity changes and attenuation. These works aim to use these veloc-
ity change and attenuation spectra to either determine the depth of perturbations or to understand
the underlying physical mechanisms. Moreover, I explore the potential of probing deep volcanic
activity through inter-source interferometry, using repeating earthquakes fromMount St. Helens.
This part proposes novel methods and insights to tackle the challenges in imaging and understand-
ing of seismic property changes, with applications ranging from subsurface exploration to volcano
monitoring.

In the second part, I focus on hydrofracturing dynamics, employing advanced imaging and
acoustics to study fluid-induced fracturing patterns and their correlation with seismic activities,
using the Cascadia region’s tectonic tremor swarms as a case study. I also investigate hydromechan-
ics within artificial fault-valve media, specifically fluid migration and its effects on fault instability
and permeability. I further explores high-performance seismic processing, developing a new en-
semble learning framework to enhance the generalizability of seismic phase pickers. This part aims
to advance understanding of fluid-induced deformations and their implications for seismic hazard
assessment and resource optimization.
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5.2 Kymograph, pixel intensity variation rate, and AE signals. Top panels: kymograph of
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solid cyan lines represent the fracture and fluid fronts in the upper panels, respectively.
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rock samples ? ? . Alternative models also include jamming of granular media ? ? . . 90
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5.5 Example Tremor Swarm in Cascadia. (a) Individual tremor locations during one slow
slip event that startedMarch 10th, 2019, color-coded by occurrence time since origin.
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energetic tremors in the north ? . (a) The black line highlights the example event in Fig.
5.5a. Swarms systematically radiate greater energies from north to south. (b) The slopes
of the curves in (a), measured as the linear regression coefficients, are displayed versus
the radiated energy. We find a median regression coefficient, n, as the power for E An

to be 1.16 for the 500 swarms studied, which lies between the laboratory values of n =
1.19 and n = 1.07 for the high- and low-viscosity experiments, respectively. The power
exponent is more variable for the small swarm relative to larger ones. We refer to Fig.
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jection rate of 2 ml/min. Attention is drawn to the highlighted segments. The varied
colors represent distinct fluid pressure (Pf) fluctuations and the corresponding phys-
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ing pixel variations correlated with movements of fluid and glass beads. This visual-
ization is created by extracting a central vertical slice from video frames, after subtract-
ing a background image, which is displayed on the right for reference. Differentiat-
ing the intertwined effects of fluid dynamics and bead displacement on light inten-
sity and pixel distribution is complex. However, through manual review of the ani-
mation, we have identified and labeled the specific physical processes causing changes
in pixel intensity and position. The associated video is accessible here. Note that due
to the video’s large size, it is segmented, analyzed in parts, and then reassembled. The
background image used for reference is rotated by 90 degrees. . . . . . . . . . . . 103
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6.3 During the hydromechanical process, we captured continuous acoustic data (depicted
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(upper), 3 ml/min (middle), and 4 ml/min (lower). Superimposed on these record-
ings are the instantaneous envelopes (in red) and the cumulative envelopes (in green).
Arrows are used to indicate the occurrence of different physical processes. . . . . . 105
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D.11 Drop Ball tests: AE combined with high-speed imaging. (a) Experimental setup of the
drop ball test (inner upper picture) and zoom-in image of falling steel ball (r=2mm)
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1
Introduction andMotivation

1.1 General introduction

The shallow Earth is a dynamic membrane of the Earth’s crust. It is subject to external forces such

as transient tectonic stresses, continuously fluctuating hydrological and magmatic conditions, ther-

moelastic expansion and contraction, and tidal stresses, among other forcing mechanisms. These

forces act across a wide range of length and time scales. Earthquake ruptures induce material dam-
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age, and in turn, the structural changes affect the evolution of earthquake ruptures: Earth properties

and earthquake hazards are a tightly coupled dynamical system. This coupling is often ignored in

both observational and theoretical studies of earthquake phenomena. Therefore, studying the shal-

low Earth’s materials’ dynamical properties at short- and long-term time scales will improve our

understanding of earthquake initiation and damage, volcanic magma activities, natural resource

management, for example, tracking the groundwater, as shown in Fig.1.1A.

The rheology of materials is a theoretical framework that relates stresses and strains that materials

undergo, and it depends on material composition and deformation mechanisms ? . Seismic prop-

erties, such as elastic wavespeed and anelastic attenuation, depend upon the material rheology ? .

Laboratory experiments ? ? ? and seismological observations ? ? ? have shown that perturbations in

acoustic and elastic velocities are correlated with surrounding stress perturbations or with observed

material damage, suggesting that the monitoring of seismic wavespeeds allows for the monitoring of

the properties of elastic rheology. Therefore, measuring changes in time and space of these proper-

ties would enable a rapid assessment of near-surface dynamics. Time-lapse seismic velocity has be-

come a popular tool to monitor volcanic activities ? , earthquake co-seismic damage ? , and environ-

mental effects, such as atmospheric conditions and subsurface hydrology ? ? ? . Current advances ? ?

are undertaken to probe and image these changes in time and space, especially the depth. Addition-

ally, only a few studies have attempted to monitor the seismic attenuation ? ? ? ? . Because seismic

attenuation is rather difficult to measure, only a few studies have measured temporal changes in

attenuation ? ? .

The underlying mechanism during the earthquake nucleation is closely related to the change

of the material rheological properties. There are several lines of evidence that material properties

change before, during, and after earthquake ruptures. Models that use continuum damage mechan-

ics predict a coseismic or co-shaking reduction in rigidity and, therefore, seismic velocity ? . Obser-

vations of a reduction in seismic velocity during or due to strong shaking are numerous ? ? ? ? ? ? ? ? ? .
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The evolution of the seismic velocities as it recovers from the co-seismic damage behaves in a log-

arithmic fashion (see reference here-in) as observed in natural earthquakes. The only reliable pre-

cursory signal observed before a major earthquake was made by Niu et al. ? at the Parkfield SAFOD

drill site. Most importantly, slip events’ laboratory measurements predict cyclic variations in seis-

mic velocities and attenuation during the earthquake cycles ? ? . Nevertheless, this has barely been

observed in the past; whether this is an issue of detectability or a misunderstanding of earthquake

physics is unresolved. Similar to the tectonic stress, magmatic inflation ? , tidal ? , and atmospheric ?

forces influences material properties of Earth’s shallow crust. This emphasizes the importance of dis-

tinguishing their contributions through understanding and monitoring of their changes in seismic

properties.

The fluid has a dramatic influence on the seismic properties of the material and its mechanical

behavior. Fluctuations in groundwater aquifers and water table levels have impacted near-surface

seismic velocities ? ? . Water is injected at a high rate into the ground to fracture rocks to enhance oil

and geothermal energy production. To be disposed of or leaked, they have caused significant effect

by inducing seismicity in intra-continental areas ? ? ? ? . United States induced seismicity may provide

opportunities to make such observations ? . The fluid-related aseismic slip or creep often accompa-

nies the seismic slip ? . The slow slip plays a rate-strengthening role and interacts with the weakening

parts during the fracturing nucleation ? ? ? ? . Laboratory experiments provide tremendous oppor-

tunities to explore these interactions and overcome the limitations of the rare observations in real

Earth.

My overall research objective is mainly to explore two fundamental questions: How does fluid

and/or deformation influence the seismoacoustic properties of porous media? How does fluid

modulate deformation, fracturing, and seismoacoustic behaviors? Centered around the two

questions, I develop new experimental apparatus and monitoring methods aimed at elucidating

empirical relationships and fundamental phenomena. These insights are then applied to interpret
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Figure 1.1: Overview of research themes. (A) Schemaঞc reprentaঞons of target research contexts. (B) Seismic monitor-
ing of volcanic acঞviঞes. (C) Seismo-acousঞc monitoring of reservoir mechanical properঞes. (D) Laboratory hydrofrac-
turing within rigid media. (E) Laboratory hydromechanics in fault-valve media.

observations in specific contexts such as volcanoes, fault zones, aquifers, and hydraulic fracturing

scenarios, as illustrated in Fig.1.1A.

1.2 Fluid and/or deformation influence the seismoacoustic properties

The seismic properties introduced earlier, such as wavespeed and attenuation, are influenced by

factors like fluid presence, stress or strain, and temperature. The extent of this influence varies de-

pending on the material and its environmental context. Numerous studies have explored these

properties in diverse settings. The current efforts are on achieving 4Dmapping (3D space combined

with time) of seismic properties through the use of advanced technologies such as dense seismic ar-

rays ? ? and Distributed Acoustic Sensing (DAS) systems ? ? , along with sophisticated monitoring

techniques ? ? . Except for accurate estimation in spatial map of velocity changes, other challenges
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include: 1) The depth of velocity changes remain challenging to resolve. Frequency-dependent data

offer a potential solution for better understanding depth-related variations. ? ? ; 2) there is a notable

gap in experimental research that specifically addresses the interpretation of frequency-dependent

effects, particularly in terms of attenuation. My work aims to develop methodologies and provide

insights to address these complex issues.

In Chapter 2, I delve into the depth sensitivity of velocity changes through numerical simula-

tions and innovative frequency-dependent measurements. In these simulations, velocity changes

serve as proxies for alterations in the mechanical properties of underground media, facilitating a con-

centrated examination of wavefield dynamics and analysis. I introduce two new approaches within

the wavelet domain: Wavelet Transform Stretching (WTS) andWavelet TransformDynamic Time

Warping (WTDTW), which I then evaluate and integrate with traditional approaches across the

time, frequency, and wavelet domains to assess velocity changes. The frequency-dependent veloc-

ity changes we calculate are both precise and robust, enabling us to map out velocity-change spec-

tra and their depth-related variations. The continuous measurement of frequency-based velocity

changes significantly enhances our ability to deduce the depths at which these changes occur.

In Chapter 3, the numerical simulations discussed previously do not account for physical con-

ditions like strain deformation and fluid saturation. To address this, we employ controlled active

acoustic monitoring and 3D-printed granular media to study changes in wave speed and amplitudes

under varying states of strain deformation and fluid saturation. Initially, I investigate how the wave

speed and amplitude spectra vary with changes in water-table height within dry granular media, as

illustrated in Fig.1.1C. Subsequently, I explore the spectral responses of granular media with firmly

bonded grains under dry, partially-saturated, and fully-saturated conditions. Furthermore, I ex-

amine the spectral behavior of unbonded granular media across the same moisture conditions. By

simulating field-like scenarios in the laboratory, our goal is to comprehend how wave speed and at-

tenuation respond to different static physical processes, thereby enhancing our ability to interpret
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these mechanisms and estimate the depth of changes within field contexts.

In Chapter 4, I aim to explore the possibility of probing deep volcano’s magmatic activity, as

displayed in Fig.1.1B. Volcanoes present a unique challenge due to internal phenomena such as

magma inflation and external environmental changes. Traditional seismic interferometry tech-

niques, whether receiver-based or inter-receiver, have shown limitations in discerning these internal

changes due to interference from superficial perturbations. Here, I introduce the use of inter-source

interferometry to derive the empirical Green’s function between pairs of repeating earthquakes. Uti-

lizing the catalog of repeating earthquakes identified at Mount St. Helens, I apply the phase pick-

ing method developed in Chapter 7 to pinpoint seismic phase arrivals, locate repeating earthquake

sequences, and establish a workflow for inter-source interferometry. I present a case study where

velocity changes between a pair of repeating earthquakes are successfully detected, showcasing the

method’s potential applicability to all repeating earthquake pairs. Given the distribution of these

repeaters across various depths, this approach holds promise for shedding light on the dynamics of

the volcanic magma plumbing system.

1.3 Fluid modulates deformation, fracturing, and seismoacoustic behaviors

Fluids are almost everywhere, from shallow crust to deep subduction zone. They play a pivotal role

in geomechanics through their dehydration or injection and extraction or eruption processes. Over-

pressurized fluids can significantly interact with the material matrix and fractures/faults, potentially

triggering induced seismicity and tectonic earthquakes. Understanding and monitoring these fluid-

induced deformations and fractures are crucial for assessing seismic hazards and enhancing produc-

tion efficiency. This subject has garnered considerable attention over several decades. Building upon

the foundation laid by previous research, I aim to contribute to this field at the following aspects.

In Chapter 5, I am intrigued by the hydrofracturing dynamics due to its critical role in deci-
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phering fluid-induced fracturing behaviors across a spectrum of scenarios, from deep slow slip and

tremor zones to the processes of hydraulic fracturing for shale gas production. As the hydrofractur-

ing scenario displayed in Fig.1.1D, one novel experiment is developed and performed by utilizing

advanced imaging and acoustic techniques. This experiment facilitates the study of fracturing pat-

terns driven by fluid viscosity and pressure. By injecting pressurized fluid into a 3D-printed rigid

medium, I observe the initial rupture and subsequent rapid transverse expansion of the fracture

front, reaching velocities comparable to Rayleigh-wave speeds. This process results in a distinctive

stick-break pattern in the fracture’s forward or radial progression, characterized by the bursty energy

of acoustic signals. Drawing inspiration from these minute episodic events, I delve into the tectonic

tremor swarms observed in the Cascadia region between 2017 and 2023. I compare the laboratory

and field observations in terms of seismic/acoustic energy evolution and earthquake/fracture migra-

tion. I aim to highlight the role of hydrofractures in regulating slow earthquakes.

In Chapter 6, I am further intrigued by the hydromechanics within porous media, where fluid

movement plays a crucial role in fault zone instability and the dynamics of fluid entrapment and

leakage. The fault zone is often conceptualized as a fault-valve system characterized by variable per-

meability, illustrated Fig.1.1E. Within this context, compaction and dilatancy emerge as pivotal

interactions between fluid pressure and the surrounding solid matrix, yet these dynamic processes

are predominantly explored through numerical simulations with limited direct empirical evidence.

To bridge this gap, I have devised and conducted a novel experiment to scrutinize the hydromechan-

ical behavior in an artificial fault-valve setup during fluid injection. Utilizing high-speed imaging, I

capture the intricate fluid-solid interaction and correlate these observations with injection pressure

and acoustic data. This comprehensive approach aims to shed light on the underlying mechanisms

of fluid migration and its contribution to triggered or induced seismic phenomena.

In Chapter 7, I am also interested in the high-performance seismic processing. Since the fluid-

fracture (or fault) interactions can be inferred through seismic signals, fast and accurate seismic
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phase picking is highly demanded for earthquake location and fracture identification and character-

ization. Current deep-learning based seismic phase pickers are incredibly efficient in such task but

often limited to specific regions. To overcome this limitation, I have developed an ensemble learning

framework, named ELEP, designed to improve the generalizability of these tools, allowing them to

be applied to new regions without the need for additional training. I demonstrate the effectiveness

of the ELEP in various public datasets and continuous data processing.
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SUMMARY

Temporal changes in subsurface properties, such as seismic wavespeeds, can be monitored by

measuring phase shifts in the coda of two seismic waveforms that share a similar source-receiver path

but are recorded at different times. These nearly identical seismic waveforms are usually obtained

either from repeated earthquake waveforms or from repeated ambient noise cross-correlations. The

five algorithms that are the most popular to measure phase shifts in the coda waves are the Win-

dowed Cross Correlation (WCC), Trace Stretching (TS), Dynamic TimeWarping (DTW), Moving

Window Cross Spectrum (MWCS), andWavelet Cross Spectrum (WCS). The seismic wavespeed

perturbation is then obtained from the linear regression of phase shifts with their respective lag

times under the assumption that the velocity perturbation is homogeneous between (virtual or ac-

tive) source and receiver. We categorize these methods into the time domain (WCC, TS, DTW),

frequency domain (MWCS), and wavelet domain (WCS). This study complements this suite of

algorithms with two additional wavelet-domain methods, which we call Wavelet Transform Stretch-

ing (WTS) andWavelet TransformDynamic TimeWarping (WTDTW), wherein we apply tradi-

tional stretching and dynamic time warping techniques to the wavelet transform. This work aims

to verify, validate, and test the accuracy and performance of all methods by performing numerical

experiments, in which the elastic wavefields are solved for in various 2D heterogeneous halfspace

geometries. Through this work, we validate the assumption of a linear increase in phase shifts with

respect to phase lags as a valid argument for fully homogeneous and laterally homogeneous velocity

changes. Additionally, we investigate the sensitivity of coda waves at various seismic frequencies to

the depth of the velocity perturbation. Overall, we conclude that seismic wavefields generated and

recorded at the surface lose sensitivity rapidly with increasing depth of the velocity change for all

source-receiver offsets. However, measurements made over a spectrum of seismic frequencies exhibit

a pattern such that wavelet methods, and especially WTS, provide useful information to infer the

depth of the velocity changes.
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2.1 Introduction

The shallow Earth is a dynamic membrane of the Earth’s crust. It is subject to external forces

such as transient tectonic stresses, continuously fluctuating hydrologic and magmatic conditions,

thermoelastic expansion and contraction, and tidal stresses, among other forcing mechanisms.

These forces act across a wide range of length and time scales and therefore are considered in most

studies of subsurface rheology in various fields of the geosciences, including laboratory experimen-

tation (10−3-100 m), geotechnical engineering and reservoir exploration (100-103 m), and regional

crustal or upper mantle scale investigations (103-105 m). Laboratory experiments ? ? ? and seismo-

logical observations ? ? ? have shown that perturbations in acoustic and elastic velocities, which are

associated with the rheology of Earth materials, are clearly correlated with surrounding changes in

stresses or with observed material damage. Tracking acoustic or elastic wavespeed changes in time

and space is therefore an effective approach to monitoring the rheological properties of the shallow

Earth.

Measurements of time-lapse velocity changes have been widely used in seismological investiga-

tions. In passive seismology, seismic velocity changes are commonly utilized for tracking volcanic

activities ? ? ? ? ? ? ? ? ? ? ? ? ? , monitoring earthquake damage and stress changes near or far from the

fault ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? , evaluating changes in subsurface hydrology due to fluid injection and/or

groundwater fluctuations ? ? ? ? , extracting atmospheric effects such as pressure and temperature

on subsurface rheology ? ? ? ? , monitoring hydrocarbon and geothermal reservoirs ? ? ? ? , and other

applications ? ? ? ? . Besides geophysical research, temporal velocity changes often provide useful ob-

servations in rock physics and civil and geotechnical engineering, including material testing ? ? ? ? ? ?

and diagnosing infrastructure health ? ? ? ? . ? provided a substantial overview of the applications of

velocity change monitoring.
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Time-lapse seismic velocity changes can be measured using repeated observations of the seismic

wavefield along identical source-receiver paths. The observed seismic waves can be generated from

many types of sources. Passive sources mainly include repeated earthquakes, as first proposed by

?, and ambient seismic field interferometry, as first proposed by ?. Active sources are usually ar-

tificial sources from explosions or vibrators chosen for the target area of investigation, repeatable

by design, and thus tend to provide high spatial and temporal resolution data for time-lapse imag-

ing ? ? ? ? ? ? ? . A hybrid approach is that of ?, who proposed using heavy freight trains as repetitive

semi-passive/semi-active sources of seismic signals.

Changes in material properties may affect both elastic (wavespeed) and anelastic (attenuation)

seismic properties, yielding changes in both phase and amplitude of the repeated seismograms. In

this study, we focus only on the measurement of velocity perturbations. When the velocity pertur-

bations are large, they can be detected with relative travel-time measurements of ballistic or direct

waves ? ? ? ? ? . When the velocity perturbations are small, they can be detected in the late coda waves:

the later the scattered wave phases arrive at the receiver, the longer the propagation paths of these

waves are, and the more sensitive the waves are too small perturbations in the medium. Whether

coda waves are extracted from repeated sources (earthquake or artificial) or from ambient seismic

noise cross-correlation functions, relative perturbations as small as 10−4 can be retrieved ? ? ? ? ? ? .

The relation between phase shifts, dt, and the perturbation in seismic velocity, dv/v, is often

assumed as follows. The seismic rays travel a distance L over the travel time (or lag) t at a seismic ve-

locity v. Provided that the change in seismic velocity is homogeneous, the ray path length does not

change (dL = 0). This yields a relation between the change of seismic velocity, dv, and the phase

shift, dt: dL = 0 = tdv + vdt, such that dv/v = −dt/t. There are two general approaches to

measuring dt/t. The first is a global measurement performed by stretching two coda waves, where

a linear stretching coefficient ε can be found by maximizing the correlation coefficient between the

two coda waveforms such that ε = −dv/v. The second is a local measurement of phase shifts dt per-
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formed at a range of phase lags t, where the phase shifts are often measured within a moving window

in the time, frequency, or wavelet domain, or by using dynamic time warping ? ? . When the velocity

change is uniform, it can safely be assumed that dt increases linearly with t such that the perturbed

velocity dv/v is the opposite of the slope, dv/v = −dt/t ? ? ? . Heterogeneous velocity changes can

induce nonlinear changes in phase shifts with lag time, but local measurements of these phase shifts

are only useful when the properties of the scattered waves are perfectly known (e.g., the scatterer lo-

cation and expected arrival times of scattered waves). Otherwise, we are left to assume and fit a linear

increase of phase shifts with lag times. This study will verify this assumption is correct in the case of

fully homogeneous velocity changes and show that it is a good approximation in the case of realistic

media with laterally homogeneous velocity changes.

Observed phase shifts in the coda waves depend on both the true heterogeneity of the back-

ground velocity, its perturbation, and the volumetric frequency-dependent sensitivity of seismic

waves. Efforts towards locating velocity perturbations have focused on measuring dv/v over differ-

ent seismic frequencies ? ? ? ? and lateral mapping via geometric regionalization ? ? ? ? ? . Lateral map-

ping of dv/v is often managed by assuming straight ray paths, or volumes around the ray, between

(virtual) source and receivers and increasing the density of source-receiver path coverage. The task of

extracting depth information from these measurements remains. It is commonly assumed that coda

waves are mostly composed of fundamental-mode surface waves, and as such, low frequencies are

sensitive to deep structures, while high frequencies are sensitive to shallow structures. However, in

scattering media, without systematically depth-varying properties, body waves may dominate later

in the coda ? . ? suggested that the depth sensitivity of coda waves could instead be related to a linear

combination of body and surface wave sensitivities, with the relative importance of body waves in-

creasing with lag time. This relation was applied to lunar and terrestrial data to discriminate velocity

changes at depth from near-surface changes ? ? . Regardless of the relative contributions of body and

surface waves, frequency-dependent estimates of dv/vmay help constrain and infer the depth of
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velocity changes simply due to scale-sensitivity of different wavelengths. To increase the frequency

resolution of the dv/vmeasurements, ? proposed constructing a “spectrum of dv/v”.

There are at least five methods to measure phase shifts dt or velocity perturbations dv/v that

work either in the time, Fourier, or wavelet domains. In the time domain, there is the Windowed

Cross-Correlation (WCC, ?), Trace Stretching (TS, ?), and Dynamic TimeWarping (DTW, ?). In

the Fourier domain, there is the Moving-Window Cross Spectrum (MWCS, ?). In the wavelet do-

main, ? recently proposed theWavelet Cross Spectrum (WCS), which improved the time-frequency

resolution of dtmeasurements, from which we can further estimate dv/v over a spectrum of seismic

frequencies. At present, TS andMWCS are the most commonly used algorithms to monitor veloc-

ity changes. Technical comparisons between TS andMWCS have been extensively explored ? ? ? ? ? .

? performed an exhaustive comparison betweenWCC, TS, and DTW. ? performed a comparison of

MWCS andWCS. In this study, we propose two new wavelet methods, Wavelet Transform Stretch-

ing (WTS) andWavelet TransformDynamic TimeWarping (WTDTW), and compare all time-,

Fourier-, and wavelet-domain methods to assess their accuracy, robustness, and computational effi-

ciency.

The second section of this article tackles an algorithm verification exercise by systematically com-

paring approaches against each other in the case of a synthetic, ground truth experiment. In the

third section, we validate the assumption of linear stretching in the case of homogeneous velocity

change with a numerical experiment of a scattering halfspace medium. We develop several model

configurations relevant to ambient seismic noise configurations with a surface source-receiver pair

at two different offsets. Finally, we explore the sensitivity of our measurements to the depth of the

velocity perturbation.
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2.2 Methodologies

In this section, we introduce and test published stretching and phase-shift-based methods, present

two newmethods, and verify them all using a simply stretched waveform.

2.2.1 Windowed Cross-Correlation -WCC

The first approach to measuring phase shifts in the time domain is the Windowed Cross Correla-

tion (WCC). The maximum of the cross-correlation function between two time series occurs at a

phase shift dt that maximizes the similarity between the two time series windowed around phase lag

t. Therefore, WCC is used to measure phase shifts dt at increasing lag times t through sliding win-

dows in the waveforms, which makes this measurement local. It has been widely implemented to

measure dv/v ? ? ? ? . The algorithm requires several parameters, such as the sliding window length,

a sliding step size, a start time (minimal lag), and an end time (maximum lag). TheWCC is a classic

and robust approach. Its limitations are that it assumes that the spectral content of the waveforms

is similar (something that can be handled by narrow bandpassing of the waveforms), and ? also re-

ported that it suffers from cycle skipping issues.

2.2.2 Trace Stretching - TS

TS relies on the assumption that phase shifts dt linearly increase with lag times t. The algorithm

estimates dv/v by linearly stretching the lag time axis of one waveform such that it maximizes its

correlation with another waveform ? ? ? ? ? ? ? ? . The time axis of the stretched waveform is t′ =

t(1 + ε), where the stretching factor is often chosen on physical grounds to be less than 1. ε is found

in practice by a simple grid search to maximize the correlation coefficient between the reference

and stretched waveforms and bounded by a priori knowledge of the maximummagnitude of the
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changes in velocity. When the trace of interest is stretched and matches the reference, no regression

is required, and the velocity perturbation is immediately given by dv/v = −ε.

Because TS is a global measurement over the entire trace, it does not localize perturbations within

the coda. Therefore, it cannot discriminate between distinct phases in the coda that could be associ-

ated with specific scatterers, which limits us in locating the perturbation in space. Another possible

challenge is to apply TS on broadband signals that have a different spectral content because coda

waves of different frequencies are likely sensitive to different volumes ? . However, the advantages of

using TS are that it is capable of handling large dv/v ? and that it is robust against noise ? .

2.2.3 Dynamic TimeWarping - DTW

? introduced DTW for use in coda-wave interferometry. DTWwas first proposed in speech recog-

nition ? ? to match voices with varying speech rates. It has been widely utilized in exploration seis-

mology to estimate nonlinear phase shifts and suppress cycle skipping ? ? ? . It follows a concept

similar to TS, but instead of having a constant stretching of the lag time axis, it allows for a vari-

able stretching factor at each time lag t. t′ becomes t(1 + s(t)) and ε = s(t) varies across time lags.

The phase shifts dt are then found by taking the shortest warping path. The parameters to tune are

the maximumwarping distance allowed and a value that bounds the maximum absolute velocity

perturbation. The readers are referred to ? and ? for more details on the algorithm and parameter

selection.

DTW andWCC are both more general and flexible than the global stretching methods like TS

in that they measure local phase shifts. However, the space-time localization of scatterers is difficult

in crustal coda waves. In seismic monitoring that seeks an average dv/v, one still performs a linear fit

such that s(t) ∼ constant. ? found DTW to be robust against cycle skipping and noise, but compu-

tationally intensive.
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2.2.4 MovingWindowCross Spectrum -MWCS

MWCS, also called the doublet method, was first proposed by ? for measuring velocity perturba-

tions from a pair of repeated earthquake waveforms, or earthquake doublets. The approach is the-

oretically an extension of WCC to the Fourier domain, so it inherits many of the advantages and

limitations of WCC. It measures the time shifts in specified frequency bands, which has the added

value relative to time-domain approaches that can refine the frequency resolution. As withWCC,

the free parameters are the duration of the sliding window and the sliding step size. In contrast to

WCC, each phase shift dt is calculated in the frequency domain rather than the time domain. Oth-

ers have further discussed its implementation ? ? ? ? ? . Since MWCS is a frequency-domain extension

of the WCC, it has the requirement that the waveform is a similar but locally phase-shifted version

of the reference waveform. It is also subject to cycle-skipping issues, especially when confronting

large velocity variations ? . In part due to the implementation of the Fourier transform, it requires

the specification of a frequency band and thus suffers from trade-offs between accuracy, resolution,

and stability of the phase shift measurements.

2.2.5 Wavelet Cross Spectrum -WCS

As stated above, estimating the velocity perturbation dv/v in various frequency bands may be de-

sirable for locating the perturbation at depth. Because the Fourier transform suffers from a poor

time-frequency resolution, ? proposed to use the wavelet transform, which permits both time and

frequency localization, to extract phase delays using the wavelet cross spectrum ? ? . The wavelet

cross spectrum is a complex-valued time-frequency field whose phase φ(f, t) depends on both fre-

quency f and phase lag t. ? retrieved the phase shifts dt(f, t) = φ(f, t)/(2πf). Similar to other

methods, the frequency-dependent velocity perturbation measurement, dv/v(f), is then obtained by

the linear regression of−dt(f, t)/t.
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As discussed in ?, the main advantage of the method is that dv/v can be estimated over a discrete

frequency spectrum. The main disadvantages are that i) the phase measurements are only reliable

for the time-frequency space with sufficient power and ii) measurements may suffer from cycle skip-

ping issues ? . To maintain reliability in noisy data (i.e. local changes in the power of the cross spec-

trum), ? suggested the use of a weighting scheme based on the normalized cross-spectrum power.

In our case, we find that a weighting scheme that uses the cross-coherence power yields more stable

results.

2.2.6 Proposed methods: Wavelet Transform Stretching (WTS) andWavelet

TransformDynamic TimeWarping (WTDTW)

Here, we propose two newmethods that combine the Continuous Wavelet Transform (CWT) with

TS and DTW.We call these two approaches Wavelet Transform Stretching (WTS) andWavelet

TransformDynamic TimeWarping (WTDTW), respectively. These methods rely on the propor-

tionality between the real part of the wavelet transform and the original signal, except that each fre-

quency element of the wavelet transform is a time series with well-resolved frequency (or a perfectly

narrow bandpassed time series). Appendix A discusses the relation between a time series and the real

part of its CWT. The methods follow the same strategies as the previously detailed algorithms. First,

we calculate the wavelet transforms of the reference and the current time series. Second, we either

apply TS or DTW to the real part of the wavelet transforms as in the time-domain approaches. A

detailed workflow of bothWTS andWTDTW is given in Fig.A.1. WTS andWTDTW are effec-

tively identical to their time-domain counterparts but performed on accurate estimations of each

frequency component of the signal. We test WTS against a conventional TS approach with a nar-

row bandpass strategy (Gaussian filter) in Section 5.1. Given the direct extension of TS or DTW to

the wavelet domain, WTS andWTDTW both inherit the advantages and disadvantages of the time-

domain TS or DTW, respectively. We show and analyze the results of WTS andWTDTW in detail
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in the following sections.

2.2.7 Verification of the algorithms

Our first test is on a simple stretched synthetic seismogram. We group the methods into three cate-

gories: 1) the time-domain methods (WCC, TS, and DTW) applied to the raw and unfiltered wave-

forms, 2) the frequency-domain method (MWCS) and the wavelet-domain methods (WCS, WTS,

WTDTW) applied in a set of frequency bands, and 3) the wavelet-domain methods applied over a

vector of discrete frequencies, which forms a more complete “spectrum of dv/v”.

The reference waveform is generated similarly to ? by convolving a zero-phase Ricker wavelet

with a central frequency of 1 Hz with a time series of random values. We create a perturbed (or cur-

rent) waveform by linearly stretching the reference waveform. We choose ε = −0.1% to represent

a “true” homogeneous velocity perturbation of+0.1%. Fig.2.1(a) shows the two truncated “coda

windows” of the waveforms between lag times of 45 s and 75 s. For dilated waveforms (dv/v < 0

and ε > 0), the time series are expected to have lower frequency content than the reference wave-

form, and conversely, a compressed waveform (dv/v > 0 and ε < 0) will have higher frequency

content. However, small values of |dv/v| have limited effect in altering the amplitude spectrum

(Fig.2.1(b)). Because stretching is applied to the raw waveform, the full range of frequencies is

equally stretched reversely, simply due to the scaling theorem of the Fourier transform.

We now discuss and show the accuracy of the dv/vmeasurements retrieved by all methods (Fig.2.2).

In the first group of methods, we observe that both TS and DTW accurately recover the velocity

perturbation of +0.1%, as shown in Fig.2.2(a). However, WCC underestimates the velocity pertur-

bation by 2% of the true value, a bias that we attribute to waveform distortion and stretching within

each sliding window. In the second group of methods, we apply MWCS and the three wavelet-

based methods to signals in five narrow frequency bands (Fig.2.2(b)). We note that WTS andWT-

DTW are the most reliable because they provide estimates of dv/v that are closest to the true value.
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Figure 2.1: Syntheঞc experiment for the code verificaঞon exercise. (a) Reference syntheঞc waveform (blue) with the
stretched current waveform (red). (b) Their power spectral densiঞes.
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MWCS andWCS both yield small but noticeable biases at frequencies with lower power (or signal).

We find that the biases in WCS andMWCSmeasurements are correlated with energy variations in

the spectral content of the signal: spectral peaks coincide with small errors, but spectral troughs co-

incide with large errors. Fig.2.2(c) shows the dv/v spectrum between 0.5 and 3.0 Hz obtained with

the three wavelet-domain methods. BothWTS andWTDTW exhibit stable and correct results over

the frequencies considered, but the errors fromWCS increase with increasing frequency, especially

after 2.0 Hz. The phases measured byWCS are contaminated by low-frequency signals and influ-

enced by the large fluctuations in signal energy, a spectral leakage also highlighted by ?. Thus, WTS

andWTDTW, which use both phase and amplitude of the signal, perform better thanWCS, espe-

cially at high frequencies where the signal levels are low. The measurement uncertainties were too

small (less than 10−5) to be displayed here (see details in Fig.A.2).

To conclude, all of the methods have been verified. WCS is the only method that appears to have

a systematic bias with increasing frequency; however, the errors are reasonable across a wide range of

frequencies that would be used in realistic examples.

2.3 Validation using full waveformmodeling

This section serves several purposes. First, we test whether a homogeneous change in velocity yields

a linear stretch of the coda waves. Second, we test the methods in two simple velocity structures,

one halfspace model and one “layer-over-halfspace” model, to which we add three different pertur-

bations in seismic velocities. The latter test allows us to explore whether measurements of dv/v are

sensitive to the background velocity structure. Third, we investigate the first-order effects of the

depth of the velocity perturbation on the spectrum of dv/v. Fourth, we explore two source-receiver

configurations that are typical of ambient-noise monitoring studies: the case of a zero-offset sur-

face source and receiver that yields the reflectivity response (in this work) as a proxy of the ambient
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Figure 2.2: Velocity perturbaঞons dv/v from the stretched syntheঞc waveform shown in Fig.2.1 measured with each
method. The black dashed line represents the “true” value of dv/v. (a) Time-domain group of methods of the raw wave-
forms: the star indicates the result from WCC, the square indicates the result from TS, and the circle indicates the result
from DTW. (b) Fourier- and wavelet-domain groups of methods for waveforms filtered at mulঞple narrow frequency
bands: the yellow stars indicate the results from MWCS, the blue triangles indicate the results from WCS, the green
squares indicate the results from WTS, and the orange circles indicate the results from WTDTW. (c) Wavelet-domain
group of methods for all frequencies: the blue triangles indicate the results from WCS, the green squares indicate the
results from WTS, the orange circles indicate the results from WTDTW.

22



noise auto-correlation ? ? ? , and the case of distant-offset surface source and receiver that yields the

Green’s function and that approximates the ambient noise cross-correlation function ? . This nu-

merical exercise does not address the problem of whether the “noise cross-correlation” is a suitable

approximation to the Green’s function because i) observational studies perform a wide variety of

pre-processing steps on the raw data and cross-correlations that merit a separate investigation ? ? ? ,

ii) the measurements we make in the coda waves are less sensitive to an uneven noise source distri-

bution ? ? , and iii) the computational expense would limit the number of tests we can practically

perform. Additionally, using the Green’s function allows for the generalization of these experiments

to active-source and repeating earthquake studies.

We perform this exercise through full waveformmodeling with the software SPECFEM2D ? ? .

Table A.1 details all of the parameters used to set up the medium, source, and receiver locations, and

wavefield simulation. These parameters mainly include a) model size, grid spacing, and elastic prop-

erties of the background medium (i.e., P-wave velocity (VP), S-wave velocity (VS), and density (ρ));

b) the velocity fluctuation and correlation distance parameters of the von-Karman auto-correlation

function, designed to generate scattered surface and bulk waves from ballistic waves ? ; c) source time

functions, the direction of the source single force, source dominant frequency, and the sampling

rate for the waveform simulations. The level of VP perturbation is set to+0.1% for each exper-

iment, and hence VS perturbation is also+0.1% due to the constant VP/VS of
√
3. We use and

illustrate the simulated vertical displacement seismograms. Throughout the numerical experiments,

we perform all of the methods mentioned above using the parameters that are listed in Table A.2.

2.3.1 Half-space configuration

The simulation with a zero-offset source and receiver configuration is shown in Fig.2.3(a), and the

resulting seismograms in Fig.2.3(b). The waveform within the selected coda window is dominated

by scattered waves as there are no distinct phases. We also show their power spectral densities in
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Figure 2.3: (a) Heterogeneous VP velocity structure is shown in the colormap, the source is the red star, and the receiver
is the gray triangle. (b) Waveforms simulated with SPECFEM2D in the reference medium and medium perturbed by
+0.1% (current). (c) Power spectral densiঞes corresponding to the waveforms in (b).
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Fig.2.3(c) to highlight the spectral peaks between 0.5 and 2.2 Hz.

Similar to the previous experiment, we apply all methods to estimate dv/v and show their re-

sults in Fig.2.4. The time-domain group of methods yields accurate results (see Fig.2.4(a)), demon-

strating that both TS and DTW accurately recover true homogeneous dv/v, withWCC perform-

ing only slightly less accurately. The second group of methods based on the Fourier and wavelet

transforms also performs reasonably well for the first four frequency bands where the signal is the

strongest, as shown in Fig.2.4(b)). At higher frequencies, we find that bothWTS andWTDTW still

yield good results but that the results of bothWCS andMWCS worsen with increasing frequency.

We attribute this to the lower energy of the signals at high frequencies.

The results from the wavelet-domain group of methods accentuate these patterns (Fig.2.4(c)).

WCS is unstable at frequencies with low signal levels, which is also discussed in ?. Inaccuracies in

the dv/v estimated fromWTS andWTDTW are also noticeable (e.g., 0.005% positive bias for WT-

DTW at the spectral peak around 1 Hz), though both methods yield more stable results thanWCS.

2.3.2 Layer-over-half-space configuration

In this section, we explore the impact of a more realistic velocity structure (layer-over-halfspace) on

the estimates of dv/vwith all methods. The upper 1-km thick layer has a P-wave velocity of VP= 4

km/s, and the lower half-space has a P-wave velocity of VP = 6 km/s. S-wave velocities are propor-

tional to the P-wave velocities, with VS = VP/
√
3, and density remains constant at ρ =2000 kg/m3.

A perturbation in P-wave velocity of+0.1% is imposed, with a corresponding S-wave velocity per-

turbation due to the constant Poisson ratio. The perturbation is imposed either on the whole space,

on the shallow layer, or on the half-space. The time-domain signals exhibit little visual difference be-

tween the reference and perturbed waveforms (Fig.A.3). We only show the results for WCS, WTS,

andWTDTW below on the zero-offset and then the distant-offset source-receiver geometry. How-

ever, we report that the same conclusions as in the previous section are drawn from the other meth-
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Figure 2.4: Predicঞons of dv/v from coda-wave interferometry with various techniques for a uniform change in velocity.
(a) dv/v results of three ঞme-domain methods WCC (star), TS (square), and DTW (circle). (b) dv/v results at various
frequency bands for MWCS (yellow stars), WCS (blue triangles), WTS (green squares), and WTDTW (orange circles).
(c) The spectrum of dv/v results of the wavelet-domain methods for WCS (blue triangles), WTS (green squares), and
WTDTW (orange circles).
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ods.

The results for a uniform change and with the zero-offset configuration are similar to those found

in the previous two cases (compare Fig.2.5(a) to both Fig.2.2 and Fig.2.4(c)). This validates the as-

sumption that a linear stretch indeed reflects a homogeneous change in seismic velocities. It also sug-

gests that measuring dv/v due to a uniform change with this approach is independent of the back-

ground velocity medium. It further confirms the level of accuracy of WTS andWTDTW among

the methods over a large range of frequencies.

In the case of the shallow change, dv/v approaches the true value of dv/vwith increasing fre-

quency (Fig.2.5(b)). Since the source and the receiver are both at the surface, near-source and near-

receiver scattered waves are directly sampling the perturbed medium. Given the shorter wavelengths

of high-frequency waves, one might expect high-frequency scattered waves to sample a smaller vol-

ume near the source and near the receiver than the one sampled by low-frequency scattered waves.

Therefore, low-frequency scattered waves may sample or propagate through the deeper and unper-

turbed part of the medium.

In the case of the deep change in velocity and in the zero-offset configuration, the dv/v decreases

with seismic frequency (Fig.2.5(c)). Here, all methods yield similar results. The interpretation of the

spectrum shape is similar to that of the previous case: high-frequency seismic waves propagate in the

shallow, unperturbed medium near the source and the receiver, and the low-frequency seismic waves

propagate through and are sensitive to a larger volume, including the perturbed layer. We also report

similar results and conclusions with all other methods (Fig.A.4-A.6).

We now perform the same tests for the distant-offset source and receiver configuration to illus-

trate the case of ambient noise cross-correlation monitoring. In this case, the source and receiver

are separated by 100 km and the upper lower-velocity layer is 10-km thick. The simulations run for

300 s with a grid spacing of 1 km and time step of 0.01 s. The simulated waveforms only show small

differences (Fig.A.7). Here again, we perturb the entire medium, the upper layer, and the lower
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Figure 2.5: Spectra of dv/v obtained from three wavelet-domain methods for three experiments in the zero-offset
source-receiver case: a uniform change (a), a change in the shallow layer (b), and a change in the deep layer (c).
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Figure 2.6: Same as Fig.2.5, but for the case of the distant-offset source and receiver configuraঞon.
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halfspace. We only show the results from the wavelet-based methods in the main article (Fig.2.6),

and show similar results and conclusions for all other methods in the supplement (Fig.A.8-A.10),

including deviation from the true dv/v value for WCS andMWCS due to variations in signal en-

ergy. The spectrum of dv/v behaves similarly to the zero-offset source-receiver case, albeit with dv/v

measured at lower seismic frequencies.

It is interesting to note the contrasting shape of the spectrum of dv/v for deep vs shallow pertur-

bations. This finding is one of the main contributions of this study: there is a clear seismic signa-

ture of the depth of the perturbation in the spectrum of dv/v, which promotes wavelet methods as

promising tools for estimating the depth of velocity perturbations. In this narrow frequency band-

width, the dv/v increases with frequencies for shallow velocity perturbations and decreases with

frequency for deep velocity perturbations. This is unique to the wavelet-domain methods because

the frequency bands of other methods are too broad to capture the characteristic shapes of dv/v

spectra for different perturbation depths (Fig.A.9-A.10). We also note that the values of dv/v ob-

tained through any of the techniques may largely underestimate the true value of dv/v in instances

where the velocity change is localized in-depth, a fact that was also noted in ?. This is likely because

scattered waves propagate well beyond the thin perturbed layer.

2.4 Sensitivity with the depth of the velocity change

The previous section highlights that the depth of the perturbation has a clear effect on the spectrum

of dv/v. In this section, we systematically explore this effect in a similar exercise to one taken by

?: we perturb a thin layer within the background velocity model by adding 0.1% to the velocity

and then we “slide” this layer from top to bottom. Here, the medium is a heterogeneous halfspace

(similar to Section 3.1).

The depth sensitivity of the coda waves relies on many factors: level of heterogeneity of the
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medium, depth of the velocity perturbation, and relative contributions of surface waves (early coda)

and body waves (late coda) ? . Here, we only consider the effect of the depth of the velocity change

to dv/vmeasured with TS and to the spectrum of dv/vmeasured withWTS. We show in Fig.A.11

and Fig.A.12 the results for all other methods for the zero- and distant-offset source and receiver

geometries, respectively.

First, we consider the case of the zero-offset source and receiver configuration. Each layer is 200-

m thick and slides at an interval of 100 m down from the free surface to 2 km depth. We thus gen-

erate one reference model and 20 models with perturbations. Grid spacing is 100 m horizontally

and 20 m vertically. We simulate all seismograms with a sampling rate of 0.0004 s, and with a 5 Hz

Ricker wavelet as the source time function.

We first apply TS over the raw coda waves and plot the estimated values of dv/v for each model

(Fig.2.7(a)). The recovered velocity perturbation dv/v rapidly decreases from the true value at the

surface down to zero at depth. This is similar to what ? established. Since the depth sensitivity van-

ishes completely after 1 km, we only show the dv/v results above 1 km. Because of this loss of sen-

sitivity, it appears difficult to use the measured dv/v over the broadband coda waves and even more

difficult to use TS to infer the depth of the perturbation. We now explore the effects of perturba-

tion depth on the spectrum of dv/v, and show in Fig.2.7(c) the results for WTS. All other methods

yield the same results (Fig.A.11).

Similar to the earlier analysis (Fig.2.5 and Fig.2.6), we now obtain dv/v spectra fromWTS that

exhibit clear and systematic variations with the depth of the perturbation (Fig.2.7(c)). The spec-

trum of dv/v obtained from a perturbation contained in the upper 200 m is similar to that shown in

Fig.2.5(b): the high frequencies seem sensitive to a volume contained within the perturbed layer and

can yield the appropriate value of dv/v.

At greater depths, the dv/v spectra have a global maximum at a frequency that decreases with

increasing depths of perturbation. The global maximum of each dv/v spectrum also decreases with
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the depth of the perturbation. The loss of sensitivity of the high frequencies for deep perturba-

tions may be attributed to the fact that high-frequency waves mainly travel in the upper structure,

near surface, nearest to the sources and receivers, and where there is no velocity change. The loss of

sensitivity of the low frequencies for the deep perturbations is probably due to an averaging of the

wavefield over the unperturbed medium, as discussed earlier.

The specific frequency of 1.38 Hz appears to be a “limit frequency” where the global maxima

of the dv/v spectra converge. After testing various parameters, for both the simulation parame-

terization (i.e. dominant frequency, increment of layer thickness, and grid spacing) and the dv/v

algorithms (i.e. lapse or lag times), we find that the selection of lag times primarily affects the value

of this limit frequency. Late lag times result in a lower limit frequency, since the later coda waves

incorporate more low-frequency waves that have traveled through the deeper structure. We also find

that there is no limit frequency for the case of a dv/v spectrum extracted from direct surface wave

(see later Section 5.4). To date, we do not find any physical explanation for such convergence.

Next, we investigate the distant-offset source-receiver geometry. In this case, the perturbed layer

is 4-km thick and slides from the surface to a depth of 10 km at an interval of 1 km. We use a Ricker

wavelet with a dominant frequency of 0.3 Hz. We use both TS andWTS to construct the spectrum

of dv/vwith varying perturbation depths. The results are shown in Fig.2.7(b) and (d), respectively.

We report that lower thickness values of the perturbation layer yield a lower estimate of dv/v, likely

due to the fact that seismic waves at these frequencies sample a much broader volume than the per-

turbed layer.

Overall, the results are quite similar to those obtained from the zero-offset source-receiver con-

figuration (Fig.2.7(a) and (c)). The spectra have a global maximum that decreases in amplitude and

frequency with increasing depth of perturbation. We only show the range of frequencies where we

see the most variation in the spectra, but report that the asymptotic behavior pertains at the low and

high frequency ends. Fig.A.12 illustrates that our conclusions remain with all other methods.
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Figure 2.7: Apparent velocity perturbaঞon versus the depth of the perturbed layer for TS (a, b) and WTS (c, d), both in
the zero-offset source-receiver configuraঞon (a, c) and distant-offset source-receiver configuraঞon (b, d). The color scale
denotes the depth of the perturbed layer. The verঞcal dashed line denotes the source frequency of 5.0 Hz for (c) and
0.3 Hz for (d).

2.5 Further Discussion

In this section, we summarize the advantages and limitations of the approaches by discussing i) ac-

curacy, ii) stability against additional factors, and iii) computational efficiency of all the methods

we tested in this work. We then discuss the influence of coda wavefield composition on the dv/v

measurements.

2.5.1 Accuracy comparison

In order to investigate the accuracy of all methods, we statistically perturb the uniform background

velocity model (Section 3.1) from -0.5% to 0.5% with an interval of 0.05%. This is effectively a boot-

strap on the velocity structure and we perform the same analysis as in Section 3.1. The residuals

between estimated and true values of velocity change are shown in Fig.2.8.
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In the first group of measurements in time domain, the errors are on the order of about 10−5,

which are much smaller than other (wavelet and Fourier) methods. TS and DTW have greater ac-

curacy thanWCC. In the second group of methods (in frequency bands), we observe that both

MWCS andWCS’s errors are greater than that fromWTS andWTDTW, especially in the high-

frequency bands, where the errors become greater than those of WCC.We attribute the larger errors

fromMWCS andWCS to their lower accuracy in estimating phase lags at frequencies with low

signal energy. Their accuracy would probably be comparable if the signals had similar frequency

bands.

Among all approaches and in the tests presented above, WCS is the most sensitive (i.e. high error)

to the low-energy signals, especially at high frequencies (see Fig.2.8(c)). WTS performs better than

WTDTW, but both have the best accuracy among the suite of methods we tested. Similar results

can be achieved in the third group for all individual frequencies. Small biases around 1 Hz may

result from the relatively low energy levels at this frequency in the time series, as shown in Fig.2.3(c).

Because WTDTW is more sensitive to relative signal amplitudes thanWTS, the WTDTW errors are

slightly larger than those of WTS.

Additionally, we revisit the statement that WTS is more accurate than the combination of a time-

domain narrow bandpassing and TS approach. We test with a Gaussian filter and find that WTS

yields higher accuracy and better computational efficiency than bandpassing (Fig.A.13).

2.5.2 Additional factors that can affect the results

In practice, the measurements of velocity perturbations may be impacted by many factors: variation

in earthquake or noise source spectrum, window length, lag time, and noise levels. As we discuss in

this section, the two factors that most influence the measurements are the time series spectrum and

the noise level. We explore the influence of these factors on the dv/v based on the models of Section

3.1.
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Figure 2.8: Errors in velocity-perturbaঞon esঞmaঞons over 20 realizaঞons of homogeneous velocity changes. In all
three panels, the black dashed line represents zero error. (a) Errors of ঞme-domain methods: black stars indicate the
errors from using WCC, black squares indicate the errors from using TS, and black circles indicate the errors from using
DTW. (b) Errors of four approaches in the bandpassed filtered Fourier and wavelet methods (second group). (c) Errors of
three wavelet-domain approaches in the third group.
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Temporal changes in the ambient noise or earthquake source spectrum in coda-wave interfer-

ometry, which is also discussed in ?, affect the spectral content of the coda waves. We thus examine

the effects of varying the source time function spectrum. We vary the dominant frequency of the

Ricker wavelet of waveform in the “current state” and compare to a reference dominant frequency

of 1.0 Hz. We find that changing the dominant frequency of the Ricker wavelet may cause system-

atic biases that mainly fall between -0.05% and 0.05%. This effect is common to all approaches, with

a slight under-estimation when the dominant frequency of the current signal is lower than the dom-

inant frequency of the reference signal, and vice versa (Fig.A.14). The measures of uncertainty from

WCS andWTS are lower (< 0.02%) than for other methods. The stretching-based methods are the

most stable, whereas the DTW-based methods are the least stable. This is because the DTW-based

methods are sensitive to the small differences in the phase of the waveforms.

Next, we investigate the dependence of dv/vmeasurement stability on lag time. Here, we choose

a dominant source frequency of 1 Hz, simulate the wavefield through both reference and perturbed

media, and perform the dv/v analysis by varying the start time of the coda window (lag time). Over-

all, TS andWTS perform best over all lags (Fig.A.15). Since the amplitude spectrum of the signal

varies with lag time and remains somewhat unstable for all lag times, the MWCS andWCS results

have increased deviation and instability with lag time, especially at low frequencies. This test also

demonstrates that WTDTW has large deviations at low frequencies.

We test the influence of the window length by varying it between 15 and 55 s (Fig.A.16) but find

no significant impact on the stability of the measurements. To test the influence of the noise level

on the dv/v estimates, we select one segment of coda waves and add a Gaussian noise by varying its

peak absolute amplitude between 0% and 30% of the maximum absolute amplitude of the original

signals. Unsurprisingly, high noise levels yield poorer results (Fig.A.17). Overall, WTS andMWCS

are the most robust methods against noise.
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2.5.3 Comparison of the methods computational efficiency

We also test the computational efficiency of all approaches in a similar way to ?. We execute each

approach twenty times with the example shown in Section 3.1 on a single CPU, and then compute

their mean computation time (see Fig.2.9). The time-domain methods are much faster than the

other methods, likely due to the added computational cost of the Fourier and wavelet transforms

and the number of frequencies over which we perform the analysis. Linear stretching is faster than

dynamic time warping. Because the Fourier transform is faster than the wavelet transform, MWCS

is less expensive than the three wavelet-based methods. We conclude that WCS is the most com-

putationally efficient among the three wavelet-domain methods, because phase differences can be

directly obtained from the wavelet cross spectrum. WTS andWTDTW become the most compu-

tationally expensive. We note that compute times may vary by a factor of 100 and thus their imple-

mentation will likely be weighted against accuracy.

2.5.4 On the scattering of body and surface waves

The relative contribution between scattered body and surface waves in coda waves is complex and

changes with lag times due to multi-pathing and mutual wave-type conversions. Because surface and

body waves are both emitted and received at the surface, both have sensitivities that vary with depth.

Knowing the relative contribution of wave types in the coda is critical for a proper interpretation of

the dv/v spectra in terms of perturbation depth. ? ? first studied this using numerical simulations of

wave propagation in a heterogeneous half space. They found that the “early” coda was dominated by

surface waves and the “late” coda was dominated by body waves. We proceed similarly in this study

using a distant-offset (100 km) source-receiver geometry with three different tests:

1. First, we start with a uniform halfspace medium with no perturbation in velocity (i.e. no

scattering). We window 10 s before and 30 s after the surface-wave arrival (at about 92% of
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Figure 2.9: Mean velocity-perturbaঞon computaঞonal ঞme over 20 realizaঞons of homogeneous velocity changes
for all methods. Note that the blue, orange, and green ones represent the first, second, and third group of methods,
respecঞvely.
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the shear-wave velocity) (WTS results shown in Fig.2.10(a)). The windowed signal is clearly

dominated by surface wave amplitudes, thus we neglect the contribution of S waves in these

results.

2. Second, we add a halfspace above the source-receiver axis and add an absorbing condition to

all sides of the model, thus only exciting body waves. We window 10 s before and 30 s after

the S wave (WTS results shown in Fig.2.10(b)). S waves have larger energies than P waves and

thus are likely the main contributor to our measurements. We check that the window does

not contain P waves and is free from artifacts of the absorbing boundary conditions. Note

that the concept of “depth” here is simply a distance from the source-receiver axis.

3. Third, we simulate scattering by adding back the velocity heterogeneity in the whole space

model to simulate only scattered body waves. We window from the lapse time of 185 s

to 225 s (WTS results shown in Fig.2.10(c)). Similar to the previous case, the concept of

“depth” here is simply the distance from the source-receiver axis.

4. Fourth, we add back the traction-free boundary condition (same as the model configuration

of Section 4). We select three 40-s long windows, respectively starting from the early (55 s),

middle (115 s), and late (185 s) lag times, and compute three dv/v spectra at the velocity-

perturbation depth of 1 km (Fig.2.10(d)).

The first two experiments aim to provide the seismic signature of direct/ballistic surface waves

and of direct body waves. The first two results show that ballistic surface waves are about twice as

sensitive as ballistic body waves to the shallow perturbation (Fig.2.10(a,b)), a finding that resonates

with that of ?. The depth-frequency dependence seen in Fig.2.10(a) is likely a signature of the sen-

sitivity of surface waves with depth. The depth-frequency dependence seen in Fig.2.10(b) is likely a

signature of finite-frequency sensitivity of body waves.
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We then investigate the seismic signature of scattered waves. The third exercise excites scattered

body waves, and our results suggest that scatterings drastically reduce the sensitivity of body waves

(Fig.2.10(c)). This contrasts with the results from scattered waves in a half space (Fig.2.7(d)). We

deduce that the dv/v spectra in the heterogeneous half space are dominated by surface waves.

Given the findings of ? with respect to lag time, we evaluate the effect of relative wave-type con-

tributions in the dv/v spectra in Fig.2.7(d). We find that the shape of these spectra with early (55 s)

and late (185 s) lag times are similar, likely dominated by surface waves. The shape and amplitudes

of the intermediate lag time (115 s) dv/v spectra is reduced, which may indicate a greater contribu-

tion from the scattered body waves.

We further show the complete dv/v spectra of scattered body and surface waves (Fig.A.18) and

only scattered body waves (Fig.A.19) at the same three lag times. The evolution of partitioning be-

tween scattered surface waves and scattered body waves follows three stages: 1) scattered surface

waves dominate in early coda, 2) scattered body waves may contribute about equally to scattered

surface waves in the mid-coda, which fits with the findings of ? ?, and 3) scattered surface waves

dominate again in the late coda, which is supported by ? and likely due to the smaller geometrical

spreading of surface waves. Note that this interpretation depends on our attenuation-free simu-

lation, and thus may be different in areas where surface waves and shear waves are attenuated. We

also find that the depth sensitivities for the zero-offset setting are more stable than the distant-offset

setting, and have small changes across coda lag times.

2.6 Conclusions

In this study, we compare the current techniques for measuring dv/v in coda-wave interferometry.

We also develop two new algorithms, namely WTS andWTDTW, by extending the TS and DTW

methods to the wavelet domain. The goal of developing these new methods is to construct a stable
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Figure 2.10: Apparent velocity perturbaঞons for the distant-offset source-receiver configuraঞon. The dv/v spectra
measured for direct/ballisঞc surface waves waves (a) and direct/ballisঞc body waves (b) as a funcঞon of the depth of the
perturbed layer. (c) The dv/v spectra measured versus the depth of the perturbed layer for sca�ered body waves at late
lapse ঞmes (185 s). (d) The dv/v spectra measured with both sca�ered body and surface waves at early (55 s), middle
(115 s), and late (185 s) lag ঞmes for a perturbed layer at 1-km depth. All results are measured using WTS. The verঞcal
dashed line denotes the source frequency of 0.3 Hz.
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“spectrum of dv/v”, where dv/v is calculated over a dense vector of seismic frequencies.

We analyze the accuracy and stability of these techniques using full waveformmodeling. We set

up the numerical experiments to reflect two classic ambient noise monitoring configurations: the

reflectivity response (to represent the zero-offset surface source and receiver cross-correlations) and

the distant Green’s function (to represent the distant-offset surface source and receiver cross corre-

lation). Our experiments also allow us to explore the impacts of the depth of the velocity change on

the spectrum of dv/v. We have also attempted to explain the relative contribution between direct

and scattered body and surface waves into our measurements of dv/v spectra.

We summarize accuracy, stability, and computational efficiency of all methods in Table A.3. The

wavelet-domain methods enable high frequency resolution in the dv/vmeasurements (i.e. a spec-

trum), and are more accurate but computationally intensive than time-domain methods.

Details of the limitations and performances are also discussed in ? and ?. Overall, the main con-

clusions are:

1. There is a clear signature of the perturbation depth in the spectrum of dv/v.

2. The measured dv/vmost likely underpredicts the magnitude of localized velocity perturba-

tions at depth.

3. The maximum value and its corresponding frequency of the measured dv/v spectra both

decrease with deeper velocity changes.

4. WTS is our recommended method to best measure spectra of dv/v.

The three main previous studies on these topics are ?, ?, and ?. The added contributions to this

literature are the introduction of newmethods, a systematic comparison between all published

methods, and the sensitivity of the “spectrum of dv/v” to the depth of the velocity perturbation.
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The systematic variation of the “spectra of dv/v” is an encouraging step toward mapping velocity

perturbations at depth.

This study lays the ground work for further analysis. In particular, we have not addressed sev-

eral issues that are pertinent to ambient noise seismological applications. Our numerical experi-

ments may hinge on exact retrieval of the Green’s functions, while many ambient seismic noise

studies make the assumption that the noise correlation functions are merely an approximation to

the Green’s function. An additional study would be to analyze how a non-uniform noise source

distribution would affect the results across the methods. Furthermore, many studies perform ex-

tensive pre-processing of the noise ? ? and/or post-processing of the noise correlation functions ? ? .

A systematic investigation of the effects of this processing on the dv/vmeasurements would be in-

teresting, since numerical experiments are limited by poor knowledge of the Earth’s structure, and

in particular its heterogeneity and scattering properties. The obvious next step is to apply our tech-

niques to real data.
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3
Laboratory analog to monitoring

unconfined aquifers with passive

seismology
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SUMMARY

Monitoring seismic properties such as wavespeed and attenuation are diagnostic markers of strain

deformation and fluid transport in the shallow crust. While seismic observations have revealed sub-

stantial variations in temporal mechanical properties, current interpretations remain limited due to

the complexity of the sensitivity of scattered wavefields to changes in partially saturated media. We

propose the first analog experiment to relate measurements in seismic wavespeeds with ground truth

measurements in water levels in a 3D printed laboratory analog. Our results demonstrate that 1)

both wavespeed and amplitude changes have a negative relation with water-level increase in granular

media; 2) amplitude changes are susceptible to the thickness and impedance of the medium while

wavespeed changes are robust; 3) both wavespeed and amplitude changes at high frequencies are

influenced by the cohesion between grains. Our experiments provide fundamental insights into the

factors of water saturation and solid deformation for seismic monitoring in near-surface sediments.

3.1 Introduction

Seismic interferometry using ambient seismic field seismology has fueled the development of envi-

ronmental seismology by enabling the monitoring of shallow subsurface changes at high temporal

resolution. The methodology utilizes phase shifts in repeated source-receiver travel paths to extract

changes in seismic properties along the path. Seismologists have used both direct-wave measure-

ments ? ? e.g., and coda-wave measurements ? e.g., to infer the depth and lateral changes in seismic

wavespeed, dv/v. Once measured and imaged, these changes have been associated with magmatic

and hydrothermal activities at volcanoes ? ? e.g.,, differential loading from Earth tides and snow or

rain precipitation ? ? ? e.g.,, earthquake damage ? ? ? ? e.g.,, and wastewater injection or geothermal

fluid injection ? ? , and groundwater monitoring (references therein).

The focus of this study is the recent application of the methodology to monitoring groundwa-
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ter using ambient field monitoring. dv/v has been anticorrelated with pore pressure expected by

ground truth, co-located groundwater well or soil moisture measurements ? ? ? ? ? ? ? ? ? , or modeled

by diffusion of rainwater, snowmelt, or river stream ? ? ? ? ? ? ? , or inferred from remote sensing ? and

piezo-electric proxies ? . The inference of the depth at which these changes occur has conventionally

been estimated using surface wave frequency-depth sensitivity kernel, whereby deeper changes can

be probed using lower frequency ? ? . Beyond these empirical relationships, ? proposed a physics-

based model that directly expressed changes in shear wavespeed due to stress induced by pore pres-

sure changes and induced vertical loads as competing mechanisms for decreasing wavespeed (pore

pressure) or increasing wavespeed (vertical loads) depending on the permeability.

Most laboratory studies target the effects of pore pressure, stress, and relative humidity or pore

pressure in rock samples where the pore pressure is often assumed to be homogenized in the sam-

ple ? ? ? . In general, studies find that shear wave velocity is negatively correlated. There is a slight mis-

match between the rock physics experiments and the natural setting of an unconfined aquifer where

seismologists compare dv/v to groundwater levels. We propose to fill this gap using a 3D-printed

analog granular material, controlled water levels, and acoustic emissions.

In this study, we attempt to elucidate the relationship between frequency-dependent variations

of seismic wavespeed measurements, varying stress, and varied water level in a 3D-printed granular

porous medium. We design a new experiment where active-controlled acoustic monitoring is per-

formed for scenarios at different stress and water levels. We consider two common cases in geological

contexts: partial and full saturation in the granular media.
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3.2 Method

3.2.1 Experimental Apparatus

We develop a new experimental apparatus to measure the response of effective acoustic wavespeeds

and attenuation to fluid saturation and external stress in the artificial granular media. We showed

the apparatus in Fig.B.1. Our specimen has three layers: rigid resin upper and lower blocks and a

soft resin 3-D printed as a granular medium in the middle. All three components are 3D-printed

individually by using a Stereolithography (SLA) technique. The rigid media are printed with clear

resin with a tensile modulus of 2.8 GPa. The soft medium is printed with flexible resin with a tensile

modulus of 3.1 MPa. Instead of rigid material, we use a soft material to print granular media to

exaggerate the deformation and mimic a low-velocity zone. We also experiment with two regimes of

cohesion for the granular medium: unbonded grains and well-bonded grains.

Moreover, the post-curing with ultraviolet is applied to solidify the resin and assemble it into a

complete specimen. We fabricate the specimen into a “sandwich” style to create a realistic Earth ana-

log of three-layer sediment in the field. The top block is rigid in great part to enhance the coupling

of the transducer onto the surface. The granular medium is designed with uniform grains with a

diameter of 1.8 mm and interconnected pores with a porosity of 28.7%. The specifications of this

granular media are similar to that of typical sandstone and carbonate rocks ? .

We inject pure water from underneath the sample (see Fig. B.1), and the fluid is free to flow in a

plastic tube driven by a syringe pump, putting the experiment in a drained regime. We record the

water levels with a camera and fluid height is easily read due to the dyed water.
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3.2.2 Acoustic measurements

We utilize a pair of acoustic transducers for acoustic measurements: one is the source pulse trans-

mitter, and the other is the acoustic receiver. We first perform two calibrations for P- and S-wave

velocities (Vp & Vs) of the rigid and granular media by recreating the conditions for conventional

active geophysical survey: the source pulse transmitter is fixed and, once emitted, is recorded at the

receiver transducer. We repeat the experiment by shifting the position of the receiver transducer

every 1 mmwith a regular spacing to mimic a uniform spacing linear array of geophones.

A shot gather is collected and displayed in Fig. B.2a. A manual pick of the first P wave and the S

wave arrival yields a crude estimate of the wavespeed of Vp and Vs, 2.4 km/s and 1.1 km/s, respec-

tively. The velocities are associated with the upper rigid media (clear resin). We also perform a dis-

persion analysis on the shot gather with a phase-shift method (slant stacking) ? and highlight several

dispersive modes ( Fig.B.2b). The dispersion is recognized from the strong surface waves coming

shortly after the S waves, given the short source-receiver spacing. We also acquire active acoustic

data, as shown in Fig.B.3, on the soft medium. The Vp and Vs for the soft medium are 1.55 km/s

and 0.75 km/s, respectively. We summarize the material properties in Table 3.1.

Resin Vp (km/s) Vs (km/s) Density (g/cm3) E (GPa) Poisson Ratio

Rigid 2.4 1.1 1.396 4.62 0.367
Soft 1.55 0.7 1.182 1.59 0.372

Table 3.1: Elasঞc properঞes of printed materials and used for the upper and lower blocks (rigid) and in the granular
medium (so[).

3.2.3 Estimatingwavespeed and amplitude changes

We perform acoustic measurements at a fixed distance between transducers at different times with

condition changes. Robust, repeatable, and reliable amplitude measurements are required to inter-
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pret amplitude changes due to structural changes properly. We stick the transducers to the specimen

using printed mounting blocks and grease for tight contact (see Fig. 3.1a). We first measure acoustic

waves in the absence of water (dry context) and for each level of water injected in the aquifer analog.

The P and surface waves are clearly observed for their distinct arrival times and frequency con-

tents; even the S wave is too short to distinguish. Hence, our data acquisition is more realistic than

that of straight monitoring by using opposite transducers.

For the field cases, coda wave interferometry (CWI) is frequently utilized for seismic noise inter-

ferometry and repeating earthquakes. By working on coda waves, we conduct wavelet-transform

stretching ? to measure velocity changes (i.e., dv/v) over frequencies. The spectra of velocity changes

can be seen in Fig.3.1c. Additionally, we can measure amplitude changes (e.g., dA/A) as attenuation

changes due to absorption (intrinsic) and scattering. Absolute intrinsic and scattering attenuation

can be obtained through multiple lapse time windows analysis and full envelope inversion ? of body

waves of earthquakes. However, measuring their temporal changes is still challenging. Under as-

sumptions of single scattering or strong scattering (i.e., diffusion model), the decay model proposed

by Aki & Chouet ? has been widely utilized to measure attenuation changes from observed or re-

constructed coda waves. Current development in 3D radiative transfer models ? ? would help to

better recover these changes by considering multiple scattering for different wave types. As ampli-

tudes are direct to reveal attenuation changes (ignore intrinsic and scattering contributions) without

further processing, we are not using any aforementioned theoretical models. As shown in Fig.3.1c,

the logarithmic amplitude ratios could directly indicate the response of frequency-dependent at-

tenuation to the drainage. In the next section, we will perform similar measurements for saturation

levels and stress loading.
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3.2.4 Shear velocity change of an effective medium

The effective medium approximation ? is often used to estimate the apparent velocity changes when

the dry granular medium is saturated with water. The apparent Vs of saturated media with different

water heights can be calculated by changing the medium density as,

Vs =

√ μ
ρsat

, (3.1)

where we approximate the volume of water by the change in weight height Lw

L = Lw + Ldry, (3.2)

and express the change in density with the fractional change in volume and the granular media

porosity φ:

ρsat = ρdry +
Lw

L
φρw. (3.3)

The apparent velocity is estimated from the effective medium density, which increases as the

water table rises in the dry granular media. The effective rigidity does not change with raised water

levels, but the effective density increases. This leads to a predicted decrease in shear wavespeed as the

water table rises. We calculate the velocity changes as,

dVs,ave

V
= c

dVs

V
, (3.4)

where,
dVs

V
=

Vs − Vdry

Vdry
, (3.5)

c =
volsoft ∗ Vs

volsoft ∗ Vs + volrigid ∗ Vs,rigid
. (3.6)
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The apparent velocity changes are calculated relative to the apparent Vs of the dry medium.

We also calculate an average velocity change by a fixed averaging factor. This factor is calculated

based on the volume and velocity of soft and rigid components. TheVs,rigid has been calibrated and

shown in Table.3.1.

3.3 Results

3.3.1 Water level changes in laboratory aquifer

To reconstruct the effect of changing the water table in realistic geohydrological systems, we inject

water into the granular medium at various levels. The experiments are set under drained conditions

with fluid pore pressure remaining constant.

we record the table height and 500 repeating acoustic measurements. These acoustic measure-

ments will be stacked for a sufficiently robust signal. Example measurements have been displayed in

Fig.3.1b. As stated in the previous section, we obtain frequency-dependent dv/v and dA/A. Such

experiments and analyses are performed seven times with linearly increased water heights. We show

all of dv/v and dA/Ameasurements in Fig.3.1c.

We observed negative dv/v changes in general. The changes are highly dependent on the fre-

quencies, particularly for the frequencies below 100 kHz. After checking waveforms at a variety

of frequency bands, we report that these signals below 300 kHz are dominated by surface waves,

and the signals above 300 kHz are dominated by P waves. Thus, the strong dispersion we observed

at low frequencies resulted from surface waves, as also seen for the dispersion analysis in Fig.B.2b.

Some instabilities are also observed due to the signal power fluctuations as seen in Fig.B.4, although

the CWI gives smooth results. With the same increase in water height, we find that the dv/v at each

frequency does not decrease monotonically. This is interesting but remains unexplored.

The negative dA/A is also observed for different saturation levels. The dA/A spectra generally
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Figure 3.1: Experimental apparatus and measurements. (a) Schemaঞc acousঞc measurement in a three-layered medium
by sandwiching a granular so[ medium into two rigid blocks. (b) Examples of acousঞc waveforms are collected during
dry (black waveforms) and parঞally filled condiঞons (red waveforms). (c) Frequency-dependent wavespeed and ampli-
tude changes for different levels of the water table (color-coded).

decrease with the water height but not monotonically, as we observed for the dv/v spectra. Similar

to dv/v, the change magnitude mainly depends on the baseline velocities, where we see strong dis-

persion at low frequencies. The variation of dA/A at different frequencies is mainly decided by the

baseline amplitudes: large-power frequencies suffer from relative small variation while small-power

frequencies have relative large variations. The dA/A spectra are directly measured from the signal

spectra and inherently have strong instabilities. The dA/A spectra shown in Fig.3.1c are derived

upon the smoothed signal spectra over 100 frequency points. Additionally, when the medium is

fully saturated (i.e., water height is 14.4 mm), we notice the spectral power has a strong attenuation

as Fig.B.4. We do not include here the dv/v for spurious results due to large change in signal phases

and dA/A for the consistency. Additionally, we calculate the shear wave changes with the effective

medium approximation in the previous section and show the velocity changes for different water

heights in Fig.B.7. The significant velocity reduction indicates that the CWI underestimates those

changes due to water percolation.
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3.3.2 Cohesive granular media: dry, partially-saturated, and fully saturated

states

To consider a more realistic scenario, we deform the well-bonded granular media (i.e., cohesive

media) under an applied strain. With the elastic media, the strain and stress are simply converted

through elastic modulus. We apply the same strain deformation of 1.5 mm (i.e., compression) onto

the granular media under dry, partially-saturated, and fully-saturated states. We keep the system un-

der a drained condition so that no over-pressure is considered. At each state, we perform and stack

500 acoustic records before and after deformation. We conduct the same measurement for dv/v and

dA/A as in the previous section. The derived results are displayed in Fig.3.2.

Comparing dv/v spectra between different saturation states, we observe that deformation can

result into large reduction when the granular medium becomes more saturated. Considering the

velocity changes are dominated by shear-wave speed change, the increase in density due to filled wa-

ter and compressed pore size reduce shear-wave speed from the effective medium theory. Those

changes are nonlinear and frequency-dependent. At low frequencies (<=50 kHz), the velocity

change becomes less sensitive to the strain deformation, possibly because the wavelength (λ≈ 20

mm) is larger than the thickness of granular media. The waves at intermediate frequencies (100 ̃

500 kHz) are very responsive to the deformation, probably these waves mostly travel inside of the

medium. When wave frequency goes higher, we observe the changes become weaker, probably be-

cause high-frequency waves cannot sense that deep. This is unseen in the dry or unsaturated case,

but it becomes evident when water is filled. In particular, when fluid is fully saturated, the dominant

frequency of dv/v spectra shifts to a higher frequency. This states that the water height reaches the

sensing depth of most high frequencies, and the wet medium slows down the high-frequency waves.

dA/A spectra are also measured for the deformation at three saturation states. In the dry test, we

find that the amplitude will be decreased by compressing the specimen. The count-intuitive behav-
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Figure 3.2: Acousঞc wavespeed and amplitude changes under strain deformaঞons on the fully-bonded granular media in
(a) unsaturated or dry state, (b) parঞally saturated, and (c) fully saturated states.

ior has resulted from the structure of our specimen, where the soft (low-velocity) granular media

is placed at the middle layer. The strain deformation that mainly occurs in the soft medium causes

the decrease in thickness and pore size of the granular media, thereby decreasing the amplification

intensity of surface waves ? . This is mainly occurred on the dominant frequencies around 150 kHz.

Upon the granular medium is partially saturated, the amplitude would be attenuated for more satu-

ration due to the compression. The amplitude generally decreased more than in the dry case, while

the high-frequency amplitudes remained almost unchanged. When the granular medium is fully sat-

urated, we find that the strain deformation has less effect on the amplitude change compared to the

dry and partially saturated case. The main reason is that the amplification factor does not decrease

much due to much-decreased velocity (i.e., enhanced amplification) other than the decreased thick-

ness (i.e., reduced amplification). Although the thickness plays a dominant role, the amplification

factor has been affected a lot and has less amplitude change.

3.3.3 Noncohesive granular media: dry, partially-saturated, and fully sat-

urated states

Other than the cohesive granular media, we consider the noncohesive granular medium since it is

also widespread in the field. We use the granular media with unbonded grains. Similarly, we apply
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Figure 3.3: Acousঞc wavespeed and amplitude changes under strain deformaঞons on the unbonded granular media in
(a) unsaturated or dry state, (b) parঞally saturated, and (c) fully saturated states.

the same strain deformation (1.5 mm) on the specimen at different saturation states: dry (i.e., unsat-

urated), partially saturated, and fully saturated. We perform the same acoustic measurements before

and after strain deformation. We show the acoustic measurements for different saturation states in

Fig.3.3.

Compared with the cohesive case, we find that the compression leads to an increase in shear-wave

speeds because the shear modulus increases more than the density. We also recognize that the ampli-

tude increases at high frequencies (above 200 kHz) for the tight grain contacts, while the amplitude

change stays negative below 200 kHz. This states that the effect of medium thickness dominates

the amplitude change. When the state switches to the partial saturation, we observe that the main

velocity changes in the noncohesive case become less compared to the cohesive case because of the

compensation of the increased shear modulus. Interestingly, we observe a significant reduction

in amplitude, which is unlike the one we observe in the cohesive case. This is mainly because the

amplification in the noncohesive case is larger than that in the cohesive case, but the amplification

is similar for both cases after the compression. Thus, the larger A0 in the noncohesive case causes

larger negative changes in the amplitude ratio. When the state is fully saturated, we do not see a big

decrease in the velocities, as seen in the cohesive case. Again, the increase in shear modulus com-

pensates for the loss of the increased density. Similar to the partially-saturated state, we also observe
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larger negative changes compared to the cohesive case. Similarly, the reason is the larger A0 in the

noncohesive case.

3.4 Discussion

Our laboratory observations can provide the first insight for frequency-dependent field observations

of using seismic interferometry. Seismic changes, mainly in velocity, in shallow sediments and sedi-

mentary rocks, have been measured extensively in various scenarios. The dispersion characteristic of

dv/v spectra has been utilized to constrain the depth of velocity changes due to water levels ? . The

seismic properties of shallow sediments are easily impacted by environmental factors, such as tem-

perature, snow, tidal, and rainfall. Although their combined effects are convoluted, the sediments

are mainly influenced in terms of their saturation or moisture, pores or cracks, and elastic moduli,

which are fundamental variables considered in our parametric experiments.

Stress from earthquake waves or tidal force can cause strain deformations, which open or close

cracks. Earthquakes may usually give rise to cracks due to strong ground motions, while the tidal

stress opens up cracks through the extension. These have been investigated through uniaxial stress

experiments on rocks ? ? ? and ambient noise monitoring ? ? ? ? ? . The generic understanding is that

the opening and closing of cracks mainly result in negative and positive changes in seismic veloc-

ity. These cracks would mainly lower material stiffness and, thus, a negative relation between seis-

mic velocity and estimated volumetric or areal strain changes. Our case with noncohesive granu-

lar medium validates this, consistent with other active-source controlled seismic experiments on

rocks ? ? ? . However, our cohesive case shows an opposite effect, which suggests microcracks domi-

nate the velocity changes in natural rocks.

Our results also emphasize the competing factor from the fluid. Fluid can saturate pores and

potentially open cracks under high fluid pressure. Fluid flow or overpressurized processes can de-
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crease velocity by enhancing density or opening cracks. Both processes may coexist as the dilatant

effect, for instance, opposite velocity changes is observed due to tides ? , which is different from pre-

vious observations ? ? . This indicates that the ambiguity in explaining observed velocity changes is

because of the lack of localized geological knowledge. Basic poroelastic property of Earth’s materi-

als is needed to understand better and model the dv/v behaviors ? ? . Besides, frequency-dependent

measurements would become more important to constrain the depth of dv/v as shown in the ex-

perimental results as well as in the numerical studies ? . While measuring attenuation changes is still

challenging, our results demonstrate it serves a great complement to understand physical mecha-

nisms, especially for anelastic and nonlinear deformation ? .

Our experiments provide a protocol that we even extend to consider the effect of crack shape and

density, fluid overpressure, and thermal expansion. They can be involved in the consideration of

specific contexts. Our cases do not involve the change in acoustic attenuation due to the interaction

between wave (i.e., stress) and pores or cracks (known as squirt flow), but this has been widely stud-

ied by another experimental apparatus with low-frequency measurements ? ? ? . The effect of squirt

flow can be ignored for low-power waves. Discussing this is already out of the scope of this study.

Through a simple linear scaling, the dimension of our sample thickness (e.g., 10 mm) can become 1

km when the dominant frequency (e.g., 100 kHz) of acoustic signals corresponds to the dominant

frequency (e.g., 1 Hz) of seismic signals.

3.5 Conclusion

We develop an experimental apparatus where active-controlled source monitoring and 3D-printed

granular media are leveraged to investigate the effects of fluid saturation and strain deformation

on acoustic properties, such as wavespeed and attenuation. We measure frequency-dependent

wavespeeds and attenuations with coda wave interferometry. Our results have a generic agreement
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with previous laboratory measurements and provide a comprehension on the frequency-dependent

wavespeed and attenuation under the conditions of consolidation, deformation, and varying satu-

ration. Although current observations mostly focus on one or several frequency bands, our contin-

uous frequency measurements would be very helpful in understanding the frequency-dependent

velocity and attenuation change in field observations.
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4
Seismic Monitoring of Magmatic Activity

beneathMount St. Helens
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SUMMARY

Seismic monitoring is one important approach to tracking volcanic activity and alerting eruption

risk. Inter-station measurements of phase changes, such as ambient noise monitoring or coda wave

interferometry, are frequently utilized for long-termmonitoring of volcanoes, but the sensitivity of

the measurements is typically confined to the shallow subsurface. To explore deeper changes in seis-

mic velocity at Mount St. Helens, we propose to use instead an inter-source monitoring technique.

We leverage a vast database of detected repeating earthquakes. We undertake the full earthquake

location task in a 3D velocity model to locate the events at depth: this entails deep-learning aided

phase picking and 3D event relocation. We recompose the measurements by selecting shallow and

deep clusters. Our preliminary results of using coda wave interferometry and inter-source interfer-

ometry show a discontinuous and short-term velocity change pattern with intriguing variations. We

would complete dv/vmeasurements of all possible waveform pairs and recompose them for a long-

term and continuous change, potentially help understand magma transport or fluid pressurization.

4.1 Introduction

Probing a volcano’s deep magmatic system is of critical importance to understanding the active

volcanic systems and assessing the eruptive hazards. Geodetic and seismic measurements are two

main approaches for long-termmonitoring. While geodetic measurements, such as Global Nav-

igation Satellite System (GNSS), interferometric synthetic aperture radar (InSAR), and ground-

based strain-/tilt-meter, could provide sufficient resolution of ground surface deformations ? ? , they

may miss the deep activity that does not cause surface deformation and has limited resolution in

the depth-dependent deformations ? . Seismic data can serve as complementary measurements for

shallow- and deep-depth monitoring. Seismic monitoring of earthquakes and overall seismic power

emitted at the volcano are the cornerstone of volcano monitoring ? ? . Often, a seismic network and
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sophisticated methods are necessary for the accurate location of earthquakes ? .

Because the mechanical properties of rocks vary under stress conditions, crack orientation, pore

fluid pressure and composition, monitoring the changes in seismic wavespeed, polarization, and

attenuation is becoming a popular approach to tracking the evolution of subsurface properties of

volcanoes ? ? ? ? ? . Recent eruptions in Iceland have demonstrated the success of integrating such

monitoring into operation ? ? . Uncovering elastic property changes (e.g., seismic wavespeeds or

velocities) is therefore helpful to understanding and capturing interactions between crustal deforma-

tions and magmatic plumbing systems.

Several passive seismic interferometry techniques have been frequently utilized to track temporal

changes in seismic velocities. Ambient noise monitoring has recently gained much attention given

its potential for continuous monitoring ? . While at occasion successful in indicating pre-eruptive

activiies ? ? ? , whether velocities increase or decrease before eruption depends on the eruptions. Fur-

thermore, it is difficult to distinguish the cause of these changes as they may come from fluid mi-

grations (magmatic or hydrothermal) or rock damage. Often, surface conditions such as tidal and

atmosphere stress, snow loading/melting, and rainfall or precipitation also affect these velocities

and should be accounted for ? ? . These effects are particularly strong on glaciated volcanoes and in

MSH ? ? ? . Therefore, probing deep velocity changes remains to be undertaken.

Inter-source interferometry can recover the empirical Green’s function between two earthquake

sources ? ? , similar to inter-source interferometry, which retrieve the approximation of Green’s func-

tion between two stations. Under approximate source-receiver geometry that ensure the wavefield in

the stational phase zone, the body and coda wavefields between two sources can be reconstructed

with negligible phase error ? . We extend this technique to repeating earthquakes to explore the

possibility of probing changes in inter-source velocities. This method would complement current

receiver-based interferometry methods to probe deep structural properties ? ? ? and even refining

inter-event source distance ? ? .
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This study develops a workflow to extract deep velocity changes by leveraging the automated

detection of repeated seismicity at Mount St. Helens (MSH) ? ? , the longevity of the seismic moni-

toring, advances in deep learning to pick phases in seismograms, and aforementioned seismic inter-

ferometric methods. Hotovec-Ellis et al. ? ? have generated a continuous record of seismic velocity

changes in the shallow subsurface and demonstrated dominated by seasonal changes. This study

focuses on the post-eruption phase between 2009 and 2023.

4.2 Data

We leverage the comprehensive detections of repeated seismicity from the (RedPy catalog, last ac-

cessed 2024/01/01) at MSH.We select 1,663 families –referred to as clusters in RedPy– in total,

including 468 clusters obtained from borehole stations only and 1,195 clusters detected by surface

stations. The distribution of the seismic network is shown in Figure4.1a. We find common events

among the two sets of families, and we eventually recompile the event information and waveforms

of 1,544 unique families. The number of individual earthquakes in each family varies from 2 to

1,536. Such irregular occurrence can be recognized in Fig.4.1c and Fig.C.1. Overall, all of these

families have 16,064 earthquakes that occurred from January 1st, 2009, to January 1st, 2024. We

downloaded waveforms of individual earthquakes within each family according to the start times of

the cataloged earthquakes. One example of similar waveforms for one family can be seen in Fig.4.1b.

4.3 Methods

4.3.1 Phase picking

To locate these families, we pick the arrival times of P and S phases on the realigned and stacked

waveforms (e.g., the red waveform in Fig.4.1). Since the REDPy workflow on the Cascades volca-
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Figure 4.1: Study region and earthquake detecঞons. (a) Borehole and surface staঞons at Mount St. Helens from the UW,
CC, and PB networks; (b) Repeaঞng waveforms (in black) of one example cluster. The stacked waveform is in red. The
blue and green lines represent the arrival ঞmes of P and S waves. Correlaঞon coefficients between individual waveforms
and stacked waveforms are shown top right of waveforms; (c) Temporal evoluঞon of each family: the black and green
ones are detected by borehole and surface staঞons, respecঞvely. The red dots are the example with waveforms shown
in (b).
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noes only selects earthquakes with a minimum correlation coefficient (cc) of 0.7 at least 4 stations,

we assume the events in the same family are nearly co-located ? ? ? .

We download waveforms of 60 second duratio, 15 seconds before and 45 seconds after the time

of the RedPy detection. We do not remove the instrumental response, but we filter the waveforms

between 1 and 10 Hz. All sensors we use as velocity meters (e.g, channel BHZ and EHZ). For each

source-receiver group of waveforms in a single family, we first realign the waveforms to the first event

using cross-correlation phase shift. In the second step, we re-calculate the correlation coefficient

(CC) and obtain the stack waveform by stacking all shifted individual waveforms with CCs larger

than 0.7. Those noisy repeating waveforms are thus discarded.

For each family, we thus gather the stacked waveform of each station, increasing the signal-to-

noise ratio and enabling a more robust phase picking. We use our recently developed ensemble-

learning-based phase picker (ELEP, see Chapter 7 and ? ) to pick P- and S- phases. The base mod-

els are the EqTransformer models ? that have been trained from scratch for 6 different benchmark

data sets ? and made available through SeisBench ? . The ensembling method used here is the sem-

blance. Examples of stacked waveforms with ELEP-derived picks are shown in Fig.4.3. For ground-

truthing, we also manually picked 2440 stacked waveforms. The performance of ELEP is thus eval-

uated against these manual picks in Fig.C.2d. We keep the P and S phase picks for the stations that

are three components and only the P phase picks for stations with single vertical channels because

single-channel input degrades the picking performance and S phase picks are not predicted confi-

dently. We choose a threshold of 0.1 for P and 0.05 S for S waves to select the minimum confidence

of phase picks. We obtain a total of 13652 P picks and 12052 S picks.

4.3.2 Family Event location

With ELEP-picked phases, we employ the NonLinLoc developed by Lomax et al. ? to globally

search for locations of the 1,544 families in a 3D velocity model. The stacked waveforms represent

64



an averaged event for all events that belong to a single family. The synthetic P- and S-traveltime ta-

bles for all 16 stations are produced by running Eikonal equations ? in the 3D tomographic velocity

models ? .

We first calculate an initial location of 1,544 families. The equal differential-time (EDT) is uti-

lized as the objective function in the inversion is:

L(x) = [
∑
a,b

1√
σ2a + σ2b

exp

(
−
{
[TO

a − TO
b ]− [TTC

a (x)− TTC
b (x)]

}2
σ2a + σ2b

)
]N, (4.1)

where x is the earthquake location, TO
a and TO

b are the observed arrival times and TTC
a and TTC

b

are the calculated travel times for two observations a and b; the sum is taken over all pairs of obser-

vations, andN is the total number of observations. Standard deviations σa and σb summarize the

assigned uncertainties on the observed arrival times and calculated travel times. As tested by Lomax

et al. ? , the EDTmisfit function is more effectively compared to classic single-station based misfit.

We show the initial locations in Fig.4.2a-c with the above objective function for 3D global search.

For further refine results, the source-specific, station-term (SSST ? ? ) traveltime corrections is per-

formed in 3D volume, specifically for each station and seismic phase type. Given an initial set of

gridded travel-times and event locations, 3D grids of SSST corrected traveltimes for each station-

phase are created iteratively ? . The EDT location is then performed after each SSST corrections on

calculated traveltimes. We perform two iterations by changing the radius of source regions from 4

km to 2 km and found it sufficient to achieve better results. Three iterations are usually needed to

update locations in using 1D velocity models ? , we find that the third iteration has a strong distor-

tion in locations and degrade location results in using 3D velocity models. Besides, as we are using

3D velocity models for locations, SSST relocations do not produce significant improvement results

as seen in Fig.4.2e-f. The SSST is mainly designed for improving the initial locations of using 1D

velocity model ? . We also report that additional constraints to the source relocation, such as NLL-
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coherence and double-difference, may not help refine location results much because those families

are unique and dissimilar to each other.

4.3.3 Coda-wave interferometry

We have at least two events for each family. To solve for change in velocity among repeating events,

we apply the coda-wave interferometry ? to extract time variations in coda waves. In particular, we

utilize the wavelet-domain stretching, WTS ? ? in specific frequency bands. Currently, we focus on

the frequency band of 2-6 Hz, which dominates the signal power, and on the vertical component

seismograms. We first preprocess individual waveforms by realigning waveforms based on the P

and S waves ([Tp-1s, Ts+1s]) using cross-correlation and discarding waveforms with cc values less

than 0.7. An example of selected waveforms is shown in Fig.4.4a. Like time domain stretching, the

optimal stretching factor is found until the highest similarity between wavelet transform is reached.

Moreover, we calculate the inter-source interferometry (ISI) between two target events. ISI tech-

nique ? can generate approximations to the Green’s functions (GFs) between two events provided

some conditions about the location of the sensors at the surface with respect to the inter-source axis.

We utilized the processing workflow from ? describe to meet the conditions to recover the Green’s

function from the inter-source cross-correlation: 1) the pair of waveforms of two repeating events

recorded at the same stations are first aligned to their respective origin time of events, 2) for each

station, we cross-correlate waveforms of various repeating events, 3) the cross-correlation functions

at each station are stacked, and 4) the individual cross-correlations are selected if their correlation

coefficient with the stacked cross-correlation is greater than 0.5. Examples of these selected cross-

correlation functions between one reference event and a family of repeated sources are shown in

Fig.4.4b.

The parameters chosen to perform the coda-wave interferometry are identical to the ones that

would be chosen for inter-station interferometry. The coda window of the cross-correlation is
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estimated as 0.5 seconds before the S waves and 5.5 seconds after the S waves, assuming a shear

wavespeed of 3.5km/s. The coda window is 5 seconds. We eventually performWTS for extracting

velocity changes between individual functions and the stacked one, but only for the cc value (before

stretching) larger than 0.7.

4.4 Results

4.4.1 Earthquake locations

As we can see in Fig.4.2, the repeating earthquakes are quite distributed, not necessarily localized

on sharp features that would highlight faults. The near-surface earthquakes or those events above

stations are found much scattered and located with high uncertainties because of distorted location

probabilities ? , inaccurate near-surface velocities, and/or large uncertainty in observed picks.

Additional corrections or constraints need to be performed. In this study, we focus on subsurface

earthquakes with depths from 1km to 20 km instead of those near-surface events, for which we have

uncertainties. The PNSN has also reported that it is not handling the depth of shallow events at Mt

St Helens well (Hartog, pers.comm.). We performed a test to characterize the effects of 3D varying

seismic structure relative to the 1D velocity structure that the PNSN uses for event location. We

filter out paired events within origin-times difference within 3 seconds between PNSN catalogued

events and REDPy detected multiplets. Similar to ?, we find that including a 3D varying structure

shifts the best solution of the earthquake location shallower.

Compared with the PNSN cataloged earthquakes, we found that the velocity model has a large

effect on the location, particularly for the source depth (Fig.C.2). In contrast, the general location

pattern is similar to PNSN cataloged earthquake locations Fig.C.3b. Furthermore, the northern

earthquakes seem to be more diffused than the locations in the south, and most earthquakes are

located near the crater. From the depth distributions, we observe a significant bifurcation at a depth
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Figure 4.2: RedPy Event Families locaঞon in horizontal and two cross-secঞon views. (a-c) NonLinLoc iniঞal locaঞons of
REDPy earthquakes are in yellow. (d-f) Relocaঞons with correcঞons of source-specific staঞon terms in red squares. (g-i)
20 groups in different colors are obtained from K-means clustering with a gradual colormap. Note: background images
are the P-wave velocity (Vp) perturbaঞons with respect to the average Vp at each depth ? .
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Figure 4.3: Selecঞon from repeated signals. Two events with the highest repeঞঞons from the shallow-depth group and
intermediate-depth group. Their waveforms with ML picks for 16 individual staঞons are displayed below the geographic
maps.
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of 10 km in Fig.4.2c and f, mainly around the negative P-wave velocity perturbation zone (i.e., red

region). As interpreted from ? and multiple seismic imaging investigations ? , the negative anomaly

indicates the magma storage zone due to partial melting. This magma chamber is active and may

replenish the shallow chamber around the depth of 2 km.

These repetitive events can be leveraged to understand activities associated with the plumbing

system. We categorize the whole dataset into 20 groups by using K-means clustering ? and a defined

number of groups set to 20. The number of groups is referenced from other clustering algorithms,

such as DBSCAN ? and self-organized maps ? , which automatically generate the number of groups.

Those grouped events are shown in Fig.4.2g-i color-coded in a colormap. In the next section, we

focus the analysis on extracting data from two clusters: a shallow and one at intermediate depth

above the chambers (< 10 km).

4.4.2 Cross-correlations

We perform the cross-correlation by selecting the stacked waveforms of a given redpy family from

either shallow or deep cluster and cross correlating it with the individual earthquake waveforms of

a family in the alternate cluster. We show an example of waveforms and their cross-correlations in

Fig.4.4. To highlight the similarity between waveforms, we calculate the correlation coefficient of

the coda window to be cross-correlated between 2 and 6 seconds after the S wave. We find that some

waveforms have a low correlation coefficient. In fact, these windows seem to exhibit a difference in

relative P-to-S amplitudes yet a similar P-to-S travel time, which indicates that the focal mechanism

of these events might be different than the composite or averaged mechanism. These windows are

rejected in the selection for the cross-correlation. The resulting cross-correlation shows a mostly an-

ticausal signal with an expected arrival at the predicted S-wave arrival time. Groups of waveforms

that are clustered in time exhibit high similarity among themselves. However, the inter-group simi-

larity is low.
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Figure 4.4: (a) Example waveforms of repeaঞng events recorded at staঞon CC.STG. The cross-correlaঞon value be-
tween individual waveforms and stacked waveforms (at the top) is coded in color. Red color represents closer to 1, and
blue color represents closer to 0. (b) Inter-source cross-correlaঞon funcঞons between reference or stack waveform in
Fig.4.3d of one cluster and repeaঞng waveforms of another cluster. Locaঞons of two clusters are displayed in Fig.4.3a-c.
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Figure 4.5: (a) velocity changes for each receiver; (b) velocity changes for inter-source interferometry.
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4.4.3 Velocity changes

We generate the dv/v time series by stretching cross-correlation to the averaged cross-correlation.

Given the intermittency of the reply cluster, we obtain velocity changes irregularly sampled in time

for each source-receiver path in Fig.4.5a and inter-source region in Fig.4.5b.

Despite sparse sampling, we could recognize that overall variations are consistent across different

measurements at stations and inter-source. One striking observation is a strong reduction around

May 5th, 2022, when a swarm was frequently (every hour) occurring. The uneven distribution

hinders us from observing gradual variations in velocities. These observation gaps can be filled by

using all members in one specific group and assuming they experience the same velocity changes.

4.5 Conclusion

Deep volcano’s magmatic unrest patterns are challenged to be deciphered. Leveraging the detection

of repeating earthquakes at Mount St. Helens between 2009 and 2023, we explore a novel method

to extract big changes in seismic velocities that are typically more difficult to extract given the near-

surface strong environmental variations and measurement sensitivity.

We have developed a workflow that integrates various machine learning strategies and conven-

tional but state-of-the-art methodologies. After the semi-supervised detection from the RedPy

workflow, we pick the arrival time of P and S waves using an ensemble deep learning algorithm of

the family centroid waveform event, locate this centroid using nonlinear location in a heterogeneous

3D velocity structure. We then group the families of events by their location using K-means clus-

tering. Once grouped, we select near vertical paths to extract changes in seismic velocities observed

between sources.

Our preliminary result of estimated velocity changes suggests some interesting changes and needs

additional work to compile a near continuous time series using all pairs of families, as done in ? ? .
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After obtaining those changes at different depths, we hope to interpret the deep changes in relation

to deep seismic activities to characterize the evolution of the magma chamber in this post-eruption

phase.
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SUMMARY

The fracture of Earth materials occurs over a wide range of time and length scales. Physical con-

ditions, particularly the stress field and Earth material properties, may condition rupture in a spe-

cific fracture regime. In nature, fast and slow fractures occur concurrently: tectonic tremor events

are fast enough to emit seismic waves and frequently accompany slow earthquakes, which are too

slow to emit seismic waves and are referred to as aseismic slip events. In this study, we generate si-

multaneous seismic and aseismic processes in a laboratory setting by driving a penny-shaped crack

in a transparent sample with pressurized fluid. We leverage synchronized high-speed imaging and

high-frequency acoustic emission (AE) sensing to visualize and listen to the various sequences of

propagation (breaks) and arrest (sticks) of a fracture undergoing stick-break instabilities. Slow ra-

dial crack propagation is facilitated by fast tangential fractures. Fluid viscosity and pressure regulate

the fracture dynamics of slow and fast events, and control the inter-event time and the energy re-

leased during individual fast events. These AE signals share behaviors with observations of episodic

tremors in Cascadia, United States; these include: 1) bursty or intermittent slow propagation, and

2) nearly linear scaling of radiated energy with area. Our laboratory experiments provide a plausible

model of tectonic tremor as an indicative of hydraulic fracturing facilitating shear slip during slow

earthquakes.

5.1 Introduction

Earthquakes can happen within seconds for fast or regular events to years for slow earthquakes.

The events that rupture fast at the Rayleigh wave velocity excite seismic waves that can result in

colossal damage to urban infrastructures. Conversely, earthquakes with slow rupture and slip veloc-

ities, three to four orders of magnitude lower than the Rayleigh wave speed, do not cause significant
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damage and are only detectable using remote sensing techniques. Slow earthquakes appear as aseis-

mic slips on shear faults, but they often co-evolve with weak coherent ground motions known as tec-

tonic tremors ? ? ? ? . Slow slip and accompanying tremor events are frequently observed with a wide

range of sizes and velocities ? ? ? ? . Unlike the seismic signals of fast earthquakes, tectonic tremor is

emergent, prolonged in duration, often depleted in high frequencies ? ? , and may exhibit behaviors

of intermittency and burstiness ? ? . Tectonic tremor was discovered using seismic arrays ? and can

be located using the coherence of the envelope of the signals ? ? ? . It is detected worldwide, mainly in

subduction zones ? ? ? ? ? ? ? , but also on strike-slip faults ? ? ? , and other plate boundaries ? ? .

The coexistence of slow and fast earthquakes also appears in lab experiments ? ? . Lab-generated

slow-slip events are observed acoustically as low-amplitude tremors, while fast-slip events have im-

pulsive and energetic acoustic signals ? ? . Tremors are observed during the acceleration of pre-slip

before large earthquakes ? . Studies have found that slow earthquakes may promote or inhibit large,

fast megathrust earthquakes in subduction zones ? ? ? . Investigating slow earthquakes may improve

our understanding of the triggering mechanism and potential area of fast earthquakes ? .

The observed coexistence of slow slip and tectonic tremor has led seismologists to use tremor,

or its constituent low-frequency earthquakes (LFEs), as markers of slow earthquakes. Their timing

can help detect and locate slow-slip events ? ? ? ? , estimate their size ? ? , and infer the mechanical

and stress state on the fault ? ? ? . Despite the ample observations of tectonic tremors, their source

mechanisms and relation to slow slip remain uncertain. Studies of radiation patterns of stacked

LFEs suggest that the LFEs that constitute tectonic tremor may coincide in space with shear slip

on the megathrust, where fluid pressures are thought to be high ? ? . Recently, ? and ? suggested an

alternative model whereby tremors may be markers of hydrofracture unclamping a fault that moves

in shear motion, generating some component of tensile motions. While the physical model of a

single force for the seismic source may be unrealistic ? , the concept of tensile motions, particularly

those facilitating shear slip, corroborates an alternative model to LFE generating processes proposed
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previously (e.g., ? and references therein). The subduction of Earth materials generates free fluid

from the dehydration of minerals during their phase transformation ? ? . Such fluid generation and

storage released are thought to play a major role in the genesis of tremors and slow slip involving

fault dilatancy and compaction ? ? ? ? . Fluid diffusion, whether it is constant or intermittent, may be

prevalent in subduction zones where brittle fractures are expected ? ? ? ? ? .

Although slow earthquakes have been induced in dry experiments by regulating slip rates, there

have been limited investigations on the hydrofracturing mechanism to generate tectonic tremors.

This study examines whether stick-break instabilities of tensile cracks may contribute to the pro-

cesses by which tremors are observed during slow slip events. We inject overpressured viscous fluid

in an intact transparent rigid material and observe the nucleation and propagation of fractures that

generate seismic signals similar to tectonic tremors. We then investigate the interaction between flu-

ids and fractures to understand better the evolution of slow slip rupture source area and radiated

seismic energy in a laboratory setting. Finally, we observe and discuss similarities between the labo-

ratory and natural cases, particularly the near proportionality between cumulative radiated seismic

energy and tremor area and the intermittent-burst behavior of stick-break instabilities.

5.2 Method

5.2.1 Experimental Approach

The experimental apparatus is schematically shown in Fig.5.1a. More details, including a depiction

of the experimental apparatus, are provided in Figs. D.1 and D.2. To build a stiff and transparent

sample with a notch included in the design to inject the fluid, we apply stereolithography (STL) 3D

printing of polymethylmethacrylate (PMMA) using a FormLabs Form 3 printer. The sample con-

sists of a transparent cylinder of 100 mm in diameter and 32 mm in height. We use a high-pressure

pump (Teledyne Isco 65D) to inject the fluid into the PMMA sample at a constant flow rate of 0.3
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ml/min. A pressure transducer measures the inline fluid pressure and indicates that the sample starts

breaking at a pressure of about 30MPa (FigD.3). At this instant, the compressed fluid expands sud-

denly and drives a fracture. The fluid is dyed with fluorescein, allowing us to visualize the fracture

and the fluid independently. We use a high-speed camera (Vision Research Phantom TMX 6410)

that records 500×500 pixel images (200 µm/pixel) at 100,000 frames per second (10 µs/image).

With the images from the high-speed camera, we create subtracted images, taking the difference of

each pixel between each frame and the first one, to track the cumulative fracture area. We also create

differential images, taking the difference of each pixel between two consecutive images, to visualize

detailed tangential fracturing. In addition, we use four Glaser-type broadband sensors (KRNBB-

PC) to record acoustic signals associated with the fracturing process. Those acoustic-emission (AE)

receivers have an exceptional frequency range of 20-1000 kHz with nearly flat instrumental response

in this frequency range ? . These four AE sensors are placed at each quadrant of the specimen and

record acoustic signals at a frequency of 2MHz. The experimental schematic is displayed in Fig.

D.1a and detailed in Figs. D.1-D.3. We perform two fracturing experiments varying the injected

fluid viscosity to be μ=1 cP and 800 cP in each. The complete fracture front and AE recordings are

displayed in Figs. D.4 and D.5. We also display the spectrograms of these AE signals in Fig. D.6.

5.2.2 AENucleation Location

The difference in first arrival times of the AE signals allows us to estimate the nucleation location of

the AE sources. Often, the AE signals interfere with each other (Fig. D.5), especially due to waves

reverberating in the sample, so we do not use all of them. In the high-viscosity experiment, we pick

the arrival times of acoustic waves from discernable stick-break events. We utilize the relative arrival

time between receivers that are sufficient to locate the events, and subsequently increase the loca-

tion accuracy using waveform cross-correlations. We pre-calculate all theoretical travel times using

the compressional (P-) wavespeed found by performing calibration tests (Fig. D.7) and all possible
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source locations in a polar coordinate system (radial distance, r, from the center of the specimen

and, θ, the azimuth angle taken from the East direction). We then perform a grid search as a global

inversion to find the original location of the AE signal. The misfit function L is defined as:

L(r, θ) =
∑
ij
(ttij − TTij)

2. (5.1)

where i and j denote the indices of the receivers. TT is the theoretical travel-time difference be-

tween receivers i and j. tt is the observed arrival time difference between receivers i and j (origin time

cancels). The neighboring receivers are paired as four groups for the inversion. We demonstrate the

example process of inverting the location of the first fracture event from their four arrival picks in

Fig. D.8. All fracture event locations are processed identically.

5.2.3 Estimating Radial and Transverse Fracture Area

By image processing, we track the contour of the slow radial fracture front to compute the radial

fracture area over frame time. Since we are imaging at a constant frame rate of 100,000 frames per

second, we can calculate the area of the crack surface every 10 μs. As observed in Figs. D.4 and D.8,

measurements include both the radius of the slowly expanding aseismic radial crack and the area of

fractures that propagate tangentially to this front at seismic speeds. The latter manifests as illumi-

nated pixels in sequential differential images and as AE signals. The details can be seen inMovies

S1 and S2 and are described in the later results. We focus on the propagation phases to avoid signal

saturation at the beginning of the experiment and boundary effects as the radial crack reaches out

of bounds in both low-viscosity and high-viscosity fracturing experiments. There are some differ-

ences in area measurement for the two experiments. In the high-viscosity experiment, we calculate

the transverse fracture area of discrete AE events, which lasts longer than the 10 μs measurement

interval, as the differential area between the start and end times of the AE events. These individual
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fracture areas are then summed up over time and because there is no radial propagation in between

AE events, this equals the cumulative radial fracture area. In the low-viscosity experiment, due to

continuous and weak AE signals, we simply define the start and end times of a moving window of a

fixed length (10 μs). An example of estimating the radial fracture area as a function of time is shown

in Fig. D.9. The radial fracture area consists of multiple transverse fracture areas.

5.2.4 Estimating the AE Energy

To calculate the radiated energy of a single AE event, we need to correct the acoustic signals for path

effects as the amplitude decays due to geometrical spreading and attenuation with distance. Because

surface waves dominate the amplitudes of the wavefield that propagate in the traction-free sample,

we use the square root of the distance as the geometrical spreading term. We model attenuation as

an exponential decay with an attenuation parameter for the material absorption and scattering ? .

Therefore, the following equation is utilized to correct the signal amplitude loss:

A = A0
√
xeαx. (5.2)

where A0 is the raw AE signal in voltage, x is the distance between the transverse fracture front

and receiver, which is the receiver- or azimuth-specific (e.g., the radius is measured in the northwest

direction to correct the signals recorded by the receiver located in the same corner). As suggested by

?, the attenuation coefficient α = 21.5 for PMMA using a peak acoustic frequency of 75 kHz.

The spectrograms of recorded acoustic signals demonstrate the peaks of the dominant acoustic

power around 40 kHz, as shown in Fig. D.6. We then perform a sensitivity analysis over a range of

attenuation coefficients between 0.01 and 100. Here we choose α = 20 to correct for attenuation.

We report that an attenuation coefficient of less than 50 does not impact our main results. We show

the results for these correction experiments in Fig. D.10.
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After the signal correction, we calculate the total AE radiated energy for four individual receivers

using:

E =

∫ t1

t0
A2dt. (5.3)

where E is the radiated energy calculated from voltage (AE) data, which is shown to be propor-

tional to the kinetic energy in a drop-ball test and, therefore, proportional to the elastic strain en-

ergy (Figs. D.11 and D.12). We acknowledge that A is proportional to displacements and in voltage

units, but our empirical calibration demonstrates that it is also a valid measure of radiated energy.

Other studies have also approximated the AE radiated energy using voltage data to approximate the

released elastic strain energy ? ? . Similar processing for tectonic tremor signals, such as attenuation

correction and integration of velocity squared, is performed to calibrate and calculate signal en-

ergy ? ? ? . In equation 5.3, t0 and t1 are selected for each experiment for the energy integration. For

the high-viscosity fluid experiment, we manually pick t0 and t1 to be the window for individual dis-

cernable AE events after high-pass filtering signals (50-200 kHz). The time window varies from the

start of the fracture AE event until the start of the next event. For the low-viscosity fluid experiment,

we use an interval of 10 μs. We then compare the cumulative AE energy with the evolving fracture

surface area.

5.3 Results

5.3.1 Stick-break Instabilities

We conduct two experiments with varying fracturing fluids: the first with water (low viscosity,

μ = 1cP) and the second with a mixture of glycerol and water (high viscosity, μ = 800cP). As

studied by ?, a stick-break instability occurs in all experiments. The fracture propagates slowly in
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the radial dimension overall (thousands of times smaller than the Rayleigh wave speed), but the slow

radial fracture is accommodated by seismic transverse fractures, which propagate rapidly (close to

Rayleigh wave speed). The break amplitude (i.e., when the radial fracture front advances and trans-

verse fracturing occurs) and the stick time (i.e., time between breaks) increase as the fluid viscosity

increases, which were also shown by ?. Here, we focus on a single small but fast seismic fracture.

In the high fluid viscosity experiment, the local nucleation of the fracture occurs mainly in the

northeastern quadrant of the sample. Following the initial nucleation, the fracture expands trans-

versely very rapidly, as shown by red patches in Fig. 5.1b. A single transverse fracture takes approx-

imately 90 μs to revolve around the entire perimeter of the fracture. Given the fracture length, we

estimate the fracture speed of 1000 m/s, very close to the experimentally measured Rayleigh-wave

velocity in the 3D printed material (see glass-capillary break calibration in Fig. D.7). The AE signals

of a single event recorded by the four sensors at each quadrant of the sample allow us to confirm the

dynamics of these events. The first AE signal arrives at each sensor with a delay based on the location

of its initiation point (Fig. 5.1c). Thus, we can triangulate the signals to locate the position at which

the elastic waves originated with high accuracy (see Methods and Fig. D.8 for further details). We

find that the position of the source of the signals coincides with the exact location of the fracture

nucleation point identified visually, as shown in Fig. 5.1b. We conclude that the radiated elastic en-

ergy is released in the form of elastic waves due to the fast anti-plane propagation of a tensile crack.

Furthermore, we reveal that the whole course of the transverse fracture propagation radiates seismic

signals since, fortunately, we capture the surface wave associated with another fracture event in the

later propagation stage (Fig. D.8).

To provide a basis for comparison, we conduct a water-induced fracturing experiment. In con-

trast with the high viscosity fluid experiment, we observe numerous individual events occurring

with smaller amplitudes but much more frequently. The very small time interval between the nu-

cleation of stick-break events in this case causes strong interference in their signals, which resemble
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Figure 5.1: Experimental apparatus, subtracted images, and acousঞc signals for the high-viscous fluid experiment (μ=
800 cP). (a) Schemaঞc of the experimental apparatus with a high-speed camera and four AE sensors placed at each
sample quadrant (SW, NW, NE, SE). The filled triangles represent the AE sensor locaঞons. The dashed red and solid
cyan lines are the fracture and fluid fronts, respecঞvely. The cyan cone is the injected fluid. See addiঞonal experimental
details in Figs. D.1 and D.2. (b) Three subtracted images from the first image a[er T=2.4 ms of the first burst show
nucleaঞon, propagaঞon, and arrest of a single AE event. The red patch and arrow represent the transverse fracture area
and direcঞon, respecঞvely. (c) AE signals associated with the fracture event in (b), the black arrows denote the picks of
the first arrivals that we use for locaঞng the AE source, which is marked as the orange star in (b).

seismic tremors or swarms. Despite the difference in frequency and amplitude, every event follows

the same growth cycle from nucleation to arrest, as shown by tracking each individual fracture event

in Fig. D.9.

5.3.2 Consistency between Observed Fracture Discontinuities and AE Sig-

nals

To further analyze the causal relationship between stick-break events and AE signals, we compare

and associate transient AE signals with the radial fracture radii in the subtracted images and inten-

sity variations from differential images (Fig. 5.2). We plot the kymographs, time representations of

radial fracture radii taken in the northeast direction, for both fracturing cases with different fluid

viscosities. In these representations, we highlight the fracture front with a dashed red line and the

fluid front with a solid cyan line. The episodic displacement and stop pattern over the radial frac-
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turing process is clearly observed on the top panel of Fig. 5.2a and b. In the high-viscosity fracturing

fluid experiment, although the fracture speed is fast (≥180 m/s) for a single transverse event, the av-

erage radial propagation speed is slow ( 4 m/s), resulting from periods of pauses (i.e., stick events).

The velocity of the fluid expansion is close to the average radial fracture propagation speed. The

kymographs at other radial directions reveal similar fracture propagations as the contour of the frac-

ture front is approximately symmetrical (Fig. 5.1b andMovie S1). Besides visualizing the optical

images, four AE sensors record the acoustic signals emitted by the fracture nucleation and propaga-

tion. We can identify at least three clear events with recognizable associations with fracture disconti-

nuities and peak intensity rates. The AE wave packet may include a single event or multiple events.

As we observe, several smaller events that follow the third event occur in short periods, which results

in strong interference between the signals. The density of concentrated signals thus suggests the fre-

quent occurrence of transverse fractures. This gives rise to a faster average fracture propagation than

earlier propagation with longer stops.

In contrast, for the low fluid viscosity experiment the kymography indicates a rather continu-

ous slow fracture propagation relative to the first observation. The fluid front is very close to the

fracture front, making them hardly differentiable. The pressure fluctuations during the fluid expan-

sion induce frequent and small fractures. The average fluid expansion equals the average slow radial

fracture velocity ( 2 m/s) and is close to the one estimated in the high viscous case. The intensity-

rate curve with multiple peaks discloses a fast-paced fracture propagation. Accordingly, we observe

continuous acoustic signals filled with concurrent events with signals that overlap with each other,

which thus makes individual fracture events difficult to distinguish, as shown in Fig. 5.2b. Unlike

the high-viscosity experiment (Fig. 5.2a), uncovering the origin of these signals is a greater challenge.

The acoustic signals from either low-viscosity or high-viscosity experiments display very similar

waveforms to tectonic tremors consisting of either clear or unclear discrete seismic events, as often

observed in Japan and Cascadia.
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Figure 5.2: Kymograph, pixel intensity variaঞon rate, and AE signals. Top panels: kymograph of the subtracted images
taken in a NE direcঞon of the specimens. The dashed red and solid cyan lines represent the fracture and fluid fronts in
the upper panels, respecঞvely. Middle panels: ঞme series of the image intensity rate, which is measured as the averaged
pixels of the differenঞal images. Lower panels: acousঞc signals recorded by the four AE sensors. The amplitude unit
“a.u.” represents an “arbitrary unit” for their normalizaঞon to the peak amplitude. The back lines are the radiated energy
rates of acousঞc signals. (a) For a high fluid viscosity (diluted glycol, μ= 800 cP) experiment and (b) for a low viscosity
fluid (water, μ= 0 cP) experiment. The full-length measurements are displayed in Figs. D.4 and D.5. Note: the ঞme series
is trimmed to focus on the hydrofracture propagaঞon instead of its beginnings, which suffer from signal saturaঞon, and
endings, which are affected by sample edges effects.

5.3.3 Scaling Relationship between Fracture Area and AE Energy

We investigate the relationship between fracture area and AE energy and thus the fracture size can

be characterized with AE energy. In the case of a fracturing fluid of 800 cP, there are multiple suc-

cessive and very discernable tensile fracture events. By measuring the start and end times of each

of these clear fracture events, we can calculate the fracture area by subtraction of images between

the end and the beginning of the event and measuring the area (pixels) highlighted with high im-

age intensity. We correct the effects of geometrical spreading and attenuation of the acoustic signals

corresponding to each event and calculate their radiated energy as described above. We plot the cu-

mulative AE energy against the cumulative fracture area and highlight a nearly linear relation for the

first three events in Fig. 5.3a. To better support the interpretation of a near-linear relation, we split

the acoustic signals arbitrarily after the third fracture event into two parts. After calculating the frac-

ture surface area changes and AE energy based on the split time, we consider them as two individual
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points. The larger variance at later times is also observed compared to the earlier times because of the

uneven distribution of the events with respect to the different sensors. Averaging the energy over

four sensors can eliminate the influence of azimuthal variations to a large extent. We confirm that

the near-linear relation between cumulative radiated energy and cumulative fracture area remains

valid using sensor-averaged measurements.

In the water (low viscosity) fracturing experiment, we cannot calculate fracture area and AE en-

ergy for individual fracture events, which are inseparable in time (Fig. 5.2b). Instead, we calculate

fracture area and AE energy for each frame interval (10 μs). The acoustic signals are corrected for

geometrical spreading and attenuation using the transverse fracture front as location, calculate the

distances between the transverse fracture fronts and the sensors, and calculate their respective en-

ergy, similarly to the previous case. We show the cumulative energy against the cumulative area in

Fig. 5.3b again and observe the near-linear relationship between the two again. There is an excep-

tion for the NW sensor, which we interpret as a deviation from the circularity of the rupture front

(e.g., Movie S2). Overall, the consistent observations in both high- and low-viscosity cases suggest

that the fracture energy increases with the fracture area almost linearly, regardless of the fluid viscos-

ity. This relation is further theoretically explained in supplementary Text 1.

5.4 Comparisonwith Tectonic Tremors

We observe two types of fracturing behaviors in our laboratory experiments: 1) the slow average ra-

dial fracture velocity (2-4 m/s) actually occurs as intermittent short-duration rapid radial advances

(i.e., breaks) separated by long nearly stationary periods (i.e., stick events); 2) the fast advances nucle-

ate at the radial fracture front and propagate transversely much faster ( 1000 m/s), at the Rayleigh-

wave speed of the material. The radial fracture advancement is driven by the stress concentration

applied at the crack tip. As shown in ?, the increase in the fluid viscosity leads to larger stick-break
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Figure 5.3: Laboratory relaঞonship between cumulaঞve fractured area and cumulaঞve radiated energy. The colored
dots represent the measurements of sensors at different azimuths. The black dots are the mean esঞmate of four sensor-
specific values. The cumulaঞve radiated energy is proporঞonal to the fracture area for individual fracture events. The
gray line is the best-fit linear regression using the averaged measurements (black dots). (a) High fluid viscosity experi-
ment: the first three data points come from three clear events denoted as pink stars shown in the schemaঞc diagram.
They are recognized as the first three events in the kymograph panel in Fig. 5.2a. The late two measurements repre-
sent the signals a[er the third event, which are indisঞnguishable and divided into two groups arbitrarily. (b) Low fluid
viscosity experiment: the AE cumulaঞve energy is calculated directly on the conঞnuous vibraঞons.

events, though does not alter much the overall radial fracture speed. In such a tensile-mode fracture,

the stick-break instability results from extended fracture propagation because the pressure front is

heterogeneous (i.e., is not strictly uniform in Fig. 5.1) despite the fluid being injected at a uniform

rate, and seems ubiquitous to all-natural fractures ? . Although in nature the slow slip often plausi-

bly is too small to be measured, tectonic tremor is thought to consist of low frequency earthquakes

and may be broadband ? ? ? , suggestive of a universal slow earthquake model ? ? . The tremors gener-

ated in our laboratory experiments also exhibit broadband characteristics (Fig. D.6).

5.4.1 PlausibleMechanisms for Tremor Generation

The role of fluid migration in the generation of tectonic tremor has been proposed in multiple stud-

ies. First, where tremor occurs fluids likely come from the dehydration of minerals as they transform
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with increasing temperatures and pressure ? . Their pore-fluid pressure is inferred to be high, if not

close to lithostatic ? ? . ? suggested that the rapid tremor migration events that occur backward rel-

ative to the slow, aseismic rupture front are induced by the slow propagation ( 10 m/s) of a wave

of high pore pressure, which then reduces the effective normal stress and allows slip. Such pore

pressure diffusion is evoked in the more general case of slow-slip and tectonic tremor by ?. Tremor

fronts migration described as diffusive has been observed and inferred to reflect fluid processes in

numerous other studies ? ? ? ? ? ? ? ? .

The rupture mechanisms for low-frequency earthquakes that compose tremors are observed to

be consistent with shear slip along the megathrust ? ? ? ? ? that can be activated by overpressurized

pore fluid pressure ? ? . Recent investigations by ? and ? argued similar measurements of seismic ra-

diation pattern can be generated by a dipole or single-force mechanism, owing to insufficient station

coverage. While shear deformations are evident in geological observations, the associated tensile

veins generated at the depth of tectonic tremors also suggest that tensile fracture plays an important

role in accommodating the deformation in the context of high fluid pressure ? ? ? ?. Here, we pro-

pose that tectonic tremor may not solely be shear dislocation alongside shear slow slip but could also

facilitate shear slip through hydraulic fracturing that promotes the propagation of pore fluids and

overall shear deformation (Fig. 5.4). We discuss two observations that coincide in the laboratory and

nature.

5.4.2 Stick-break Instabilities as aModel for Intermittent Tectonic Tremor

Our laboratory experiments have demonstrated that the slow propagation of hydrofractures pro-

ceeds in a stick-break fashion, with inter-event times and fracture sizes driven by pressurized fluids

that increase with fluid viscosity ? . In nature, tectonic tremors also happen in bursts and exhibit

temporal and spatial clustering ? ? ? . We present tremor observations during an example slow slip

event in Cascadia in Fig. 5.5. Despite a general trend of tremors migrating southward in that spe-
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Figure 5.4: Illustraঞon of tremor generaঞon mechanisms in an overpressurized fault zone in subducঞon. Two primary
mechanisms may influence tremor dynamics. The first, the single-force mechanism ? ? , proposes that tremors occur
during transient fluid pressures as barriers unclog and fluid flows, which are indicated by blue arrows in the lower le[
panel. The second mechanism proposed in this study suggests a mixed mode of shear and tensile fracture resulঞng from
increased fluid pressure. The black arrows represent seismic source body forces in the lower right panel. The tensile-
shear model is also described by Sibson ? . Evidence of these crack-induced tremors can be seen in many exhumed rock
samples ? ? . Alternaঞve models also include jamming of granular media ? ? .
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Figure 5.5: Example Tremor Swarm in Cascadia. (a) Individual tremor locaঞons during one slow slip event that started
March 10th, 2019, color-coded by occurrence ঞme since origin. (b) Bursty tremors. The upper panel shows the south-
ward propagaঞon of centroid locaঞon along the laঞtude over ঞme since its origin. Each dot denotes the relaঞve dis-
tance in kilometers of centroid laঞtude of tremors within 2-hour intervals relaঞve to the original locaঞon. The error bar
indicates the laঞtude range (in kilometers) of each interval. The blue curve represents the averaged or smooth prop-
agaঞon over ঞme. The lower panel shows the curves of the number and summed tremor energy in 2-hour intervals
binned in the same way as in the upper panel. The yellow patches highlight the quiescence periods, in which no tremor
is observed. We find the episodicity of tremors similar to laboratory observaঞons in Fig. 5.2.

cific event, we also observe intermittent occurrence of tremor, punctuated by pauses with no radi-

ation interpreted as temporary stalling of tremor-initiating slow slip ? ? ? ? ? , and large variability in

centroid locations of the tremors occurring in two-hour intervals. Aspects of these observations mir-

ror our lab-based findings, albeit with greater complexity, and may suggest the potential reopening

of sealed or healed fault valves (e.g., backward ruptures). Unfortunately, our lab experiment is un-

confined and does not include healing/sealing mechanisms, therefore, we do not observe all these

behaviors in our laboratory experiments. Moreover, the intermittent and bursty characteristics of

natural tremors are noticeable when considering the radiated energy of the tremors. Comparing this

with the AE energies observed in Fig. 5.2 reveals that the stick-break instabilities could be an effec-

tive proxy model for simulating tectonic tremor-like events; we further corroborate this proposition

in the next section.
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5.4.3 Scaling Relation between Tectonic Tremor Source Area and Radiated

Seismic Energy

Since the tremors usually present a low signal-noise ratio and lack resolvable low-frequency signals,

the seismic moment (i.e., the total size and slip) is difficult to measure. Radiated seismic energy has

been utilized as an alternative measure of size to define the tremor magnitude ? ? . Our scaling rela-

tion between radiated energy and fracture area provides the first experimental evidence supporting

use of radiated seismic energy as a measure of tremor source area or size. We use an enhanced catalog

of ? with 1056 tremor swarms in the Cascadia region from 2017 to 2023, each assumed to be driven

by a slow slip event. We utilize the 500 swarms with the greatest number of tremors for measuring

their tremor areas and energies. We measured the tremor area and energy by employing a grid-based

approach that discretizes the entire Cascadia transition zone into many grid cells with a grid size of

7.5x7.5 km2. For each swarm (slow slip event), in a similar manner to summing pixels illuminated

after fracturing in the laboratory, we sum up the areas of grid cells that include tremors and the cor-

responding tremor energies within 2-hour intervals over the whole course of the event. In Fig. 5.6,

we display the relations between cumulative tremor area and energy for all 500 swarms. Similar re-

sults can be found when using data from ? serves as an independent verification (Fig. D.14). We

notice that the northern tremor swarms are systematically louder than the southern ones, which

may be controlled by the geographic variations in fault strength.

The area-energy relation demonstrates that the daily radiated seismic energy varies quasi-linearly

with the tremor source area, as shown in Fig. 5.6. The seismic signals recorded during these swarms

show very similar behavior to the AE signals recorded during the stick-break instability experiments.

In addition, the observed spread of energy-area scaling coefficients may indicate the variations in ap-

parent stress states on the subducted slab among events. The variability could be attributed further

to heterogeneities in material properties and stress loading of the subducted slab ? ? . In the labora-

92



Figure 5.6: Field relaঞonship between cumulaঞve tremor area and cumulaঞve radiated energy. The relaঞonship be-
tween cumulaঞve tremor area and cumulaঞve radiated energy for 500 inferred tremor swarms that took place in the
Cascadia region from 2017 to 2023 (adapted from ? ). The color of the circles indicates the centroid laঞtude of each
swarm, with northern to southern events shaded from red to blue, and highlighঞng the more energeঞc tremors in the
north ? . (a) The black line highlights the example event in Fig. 5.5a. Swarms systemaঞcally radiate greater energies from
north to south. (b) The slopes of the curves in (a), measured as the linear regression coefficients, are displayed versus
the radiated energy. We find a median regression coefficient, n, as the power for E An to be 1.16 for the 500 swarms
studied, which lies between the laboratory values of n = 1.19 and n = 1.07 for the high- and low-viscosity exper-
iments, respecঞvely. The power exponent is more variable for the small swarm relaঞve to larger ones. We refer to Fig.
D.15 for more details.

tory experiment, we also observe a slight asymmetry, which shows preferred nucleation and propa-

gation direction due to the heterogeneity of the loading from the fluid pressure on the fracture tip.

Therefore, the pre-existing stress condition and heterogeneity of material properties accentuate the

complexity of rupturing process in the field scenarios.

Since the range of individual event sizes was not large enough, we only focus on the relation be-

tween cumulative values for energy and area for the comparison. Regardless, relating radiated en-

ergy and fracture area may be interpreted in several ways. ? ? proposed a Brownian model for shear

events for tectonic tremor that predicts a random distribution of single moment rates functions and

a proportionality, or near proportionality between tremor area and radiated energy. A second con-

sideration might be to think about seismic moment from these tensile fractures. ? concluded that

the seismic moment is proportional to fluid pressure and cubed source radius. Our finding that ra-

diated energy scales nearly, or quasi-linearly with area suggests that the event slip is nearly constant
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with tremor area. Slip-opening invariance is quite plausible given the aspect ratios of veins ? . The

detailed analysis on the energy-area relationship is referred to supplementary Text 1.

5.5 Conclusions

The intermittency and migration of tectonic tremors are frequently observed in subduction zones ? ? ? ? .

Tremors are often hypothesized as occurring passively as shear events initiated by slow slip, from

seismogeodetic observations ? ? ? ? . However, recent geological investigations ? ? ? ? and numerical

simulations ? ? reveal that fluid propagation can potentially generate seismic behaviors similar to

tectonic tremor via a combined mechanism of shear and tensile deformations. While we focus only

on the tensile mechanisms due to our experimental limitations, our results suggest previous studies

of tremor intermittency that attribute it exclusively to sporadic fault locking and stalled tremor-

initiating slow shear slip ? ? ? ? ? should also consider a role for variable pore pressures that may cause

tensile fracturing and sealing. Additionally, in the model we propose in Fig. 5.4, the cracking and

sealing of fractures actually modify the potential for shear slip and thus tremor cannot be considered

strictly as a result of the overall driving slow slip event, but instead as a facilitator of shear slip.

We perform a laboratory experiment in ambient pressure and temperature conditions of a pure

slow tensile hydrofracturing event driven by a radially spreading fluid pressure front, accompanied

by fast fracture propagating transversely to the front. Unprecedented high spatial and temporal

resolution of the fracture dynamics reveal a stick-break instability ? , whereby AEs from the fast

break events behave like seismic tectonic tremor. The fluid decompression controls the slow ra-

dial fracture propagation pattern (Fig. D.13). The observations of decelerated radial propagations,

which are due to decreases in transient fluid pressure, explain that the migration of tremors slows

down, as observed in Fig. 5.5b. This temporal evolution has been observed in numerous other

studies ? ? ? ? ? ? ? ? ? ? , describing it as diffusive and thus in some cases attributing it to pore pres-
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sure migration. The laboratory stick-break stabilities also are similar to the intermittencies of tremor

rupture observed in Cascadia. Our study further suggests a near-linear scaling of cumulative energy

with active breaking area for both natural observation of tectonic tremor in Cascadia and the labo-

ratory experiments. The idealized geometry of our experiment likely only represents elements of a

rather complex system of veins and existing cracks.

The rate of fast transverse fracture and size vary with fluid viscosity. While the overall behavior

of the slower rupture is not affected much by fluid viscosity, we observe pauses and breaks with var-

ious durations during the slow radial fracture propagation (Figs. 5.2 and D.4). We observe that in

the high-viscosity fluid experiments, the slow radial fracture propagates with large break amplitudes

followed by long pauses. In contrast, in the low-viscosity fluid, the experiment proceeds with small

break amplitudes and short pauses. The tremor intermittency might be an indication of fluid vis-

cosity, as in our experiment. Despite these differences, the overall propagation of the slow radial

fracture (and fluid diffusion) occurs at a similar rate and coincides with fluid propagation. Simple

models accounting for the different fracture styles and fluid viscosity and with an intact, simple in-

ternal stress structure showed that the fluid viscosity impacted the stress loading conditions (i.e., the

lag between the fluid and the fracture front; ? . In nature, the viscosity of geofluids may vary tremen-

dously ? , as well as pre-existing permeability ? . These factors may control the migration of fluid pres-

sure and therefore tremor and slow slip propagation patterns, which deserves further exploration.

Our experimental results suggest a plausible model whereby fluid propagation generates seismic

events with characteristics that are comparable to field observations. The transverse breaks prop-

agate at much higher speeds (≥180 m/s) than the overall propagation speed (2-4 m/s), and are ac-

companied by fast fractures that propagate transversely to the radial rupture front and radiate AEs.

This highlights the importance of imaging with a high temporal resolution to observe the fracture

dynamics in detail. ? recently observed short-time tremor bursts that may migrate with a faster speed

(3-25m/s) than long-time tremor events. We suspect that even shorter bursts that comprise those
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individual bursts might reach higher velocities, but that temporal resolution limits the observa-

tions. Furthermore, local nucleation observed at some locations along the fracture front, followed

by transverse expansion of the fracture, suggests that the transient fluid pressure may rapidly vary

differential stress and cause complex deformations ? ? .

To conclude, our experimental approach permits the measurement of a fracturing transparent

sample in a nearly circular fracture geometry with unprecedented high spatiotemporal resolution,

providing novel insights into the generation and characterization of tectonic tremors and slow slip.

Further work should include differential stress conditions to evaluate the contribution of shear

stress on the propagation of these fractures. Alternative models to tremor generations remain at

depth. One of them describes slow earthquakes and tremor as deformation of shear zones within

granular media, where particle jamming from compression and expansion builds force chains ? ?

that may explain magnitude-frequency distributions of LFEs. While our study suggests a role for

tensile cracking (i.e., hydrofracture) in tremor genesis, it is rather likely that the reality is a combina-

tion of various mechanisms. On rare occasions have, slow slip earthquakes not been accompanied

by tremor ? , which suggests that hydrofracture mechanisms for tectonic tremor are not required for

slow slip and additional physics ought to be understood.
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6
Compaction-enhanced Instability in

Laboratory Fault-valve Media
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SUMMARY

The underlying mechanism of fluid-solid interactions remains elusive in the fault-valve systems.

Here, we design a new experimental apparatus that enable us to both visualize and listen to the fluid

transport and its interplay with the solids within artificial fault-valve media. This setup, featuring

regions of alternating permeability, allows us to explore the complex behaviors that emerge under a

steady fluid injection flow rate. Our research seeks to unravel two primary questions: 1) how does

fluid flow interact with porous media and barriers? 2) how to reveal those interactions from acoustic

and pressure measurements? Through our investigations, we discover that compaction and dila-

tancy play pivotal roles in controlling fluid movement and the integrity of barriers. Furthermore, we

find that acoustic and pressure data can, under certain conditions, provide insights into these phys-

ical phenomena. Our direct observations offer a deeper understanding of fluid dynamics in fault

zones and their potential to trigger seismic activities.

6.1 Introduction

Fault valves, ranging fromminor veins to significant megathrusts, exhibit complex mechanical char-

acteristics, comprising both permeable pathways and impermeable barriers with very low permeabil-

ity. Overpressurized fluids, resulting from processes such as fluid injection ? ? or mineral dehydra-

tion ? ? , tend to navigate through these fault channels, driven by pressure diffusion. The advance-

ment of fluid pressure is intricately linked with its interactions with the surrounding media and

the strength of the fault ? ? ? , influencing fault stability and potentially triggering earthquakes ? ? .

Additionally, these interactions can lead to the reactivation of fluid pathways, resulting in fluid leak-

age ? ? .

Fault dilatancy and compaction are pivotal mechanisms influencing the weakening or strength-

ening of fault zones due to fluctuations in fluid pressure, a phenomenon well-documented through
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laboratory experiments ? ? ? ? , numerical simulations ? ? ? ? , and field observations ? ? ? . The inter-

play between compaction, dilatancy, and fault movement is intricately linked to fluid pore pressure,

which is often utilized to deduce the states of dilatancy and friction. In addition, the viscous flow

of the matrix and fluid-mediated mass transfer significantly contribute to both compaction and di-

latancy, particularly in deeper regions subject to high temperatures ? ? ? . Despite extensive research,

the intricate dynamics between fluid pore pressure and the processes of compaction and dilatancy

have not been fully captured in laboratory settings, highlighting the need for further exploration of

these complex hydromechanical processes.

Geological studies ? have revealed that fault zones are composed of fragmented rocks, encompass-

ing pores, cracks, and joints, with permeability that varies with depth. This raises the question of

how the geological properties of fault gouge affect the propagation of fluid pore pressure. Under-

standing this dynamic is crucial for grasping how fluid pore pressure spreads and potentially initiates

earthquake ruptures. In this study, we introduce a new experimental setup utilizing artificial porous

media coupled with high-frequency measurement tools, such as cameras and acoustic transducers,

allowing us to observe, for the first time, the intricate hydromechanical interactions within a simu-

lated fault-valve system.

6.2 Methodology &Measurements

Apparatus and sample

As depicted in Fig. 6.1, we design a new experimental setup using 3D-printed materials and highly

sensitive detection methods, including a high-speed camera and a high-frequency acoustic trans-

ducer. Our experiment features a sample with five chambers separated by four barriers, each 1.5 mm

thick, designed to simulate the impermeable or low-permeability barriers found in fault valve sys-

tems. These barriers serve as a sort of ’toggle switch’, as described by ? , where their permeability is
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Figure 6.1: Diagram of experimental apparatus and measurements. (a) Schemaঞc fault valve. (b) Simplified schemaঞc
laboratory specimen. (c) Experimental apparatus design.

negligible until they fail, at which point it becomes significantly high. To simulate permeable zones,

the central three chambers are filled with glass beads. Alternatively, samples can be created with

porous media integrated directly into the chambers. While our experiments utilize both types of

samples, we primarily focus on those filled with glass beads here. For the experiments, the bead-filled

sample is placed between two sturdy, clear blocks and then clamped to compress the beads (without

bonds) and prevent fluid leakage during fluid injection.

Instrumental measurement

In Fig.6.1c, fluid injection is facilitated by a pump that introduces fluid through an inlet on one

side and allows it to exit from an outlet on the opposite side. The entire procedure is captured from

beneath by a high-speed camera, while a high-frequency acoustic transducer positioned adjacent

to the chamber monitors the process. The high-speed camera is activated by the acoustic emissions

generated as the first porous chamber compacts under increasing fluid pressure. With the recording

at a rate of 5,000 frames per second, the camera provides detailed visual data, whereas the acoustic

transducer captures continuous audio signals for up to 20 seconds at once. Concurrently, the pump

records the injection pressure and volume, with data points collected every 0.3 seconds, ensuring a
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comprehensive understanding of the fluid dynamics during the experiment.

6.3 Results

6.3.1 Injection pressure and hydromechanical variations

As depicted in Fig. 6.2b, we introduce water into the chamber at a steady rate of 2 ml/min. The

pump logs both the injection pressure and the volume of water, with these measurements presented

in Fig. 6.2a. By integrating kymographs, video recordings, and pressure data, we categorize the en-

tire hydromechanical process into distinct stages.

In the initial stage, the fluid pressure change exhibits a sequence of accelerated increase, slowing

increase, stabilization, and then accelerated decrease. As water enters the first chamber, there is an

exponential rise in fluid pressure, leading to the compaction of the second chamber by compressing

the first barrier, notably around 80 seconds. This compaction is evident from the increased pixel

intensities in Fig.6.2b. The rise in pressure then slows until the first barrier fails, followed by a rapid

decrease in pressure until a higher pressure is necessary for the fluid to enter the next porous cham-

ber.

The second stage presents a different fluid pressure change pattern: a nearly linear increase, fol-

lowed by a slow decrease, a brief transitional phase, and then a rapid decrease. This stage highlights

fluid drainage under injection pressure. Before complete saturation of the porous chamber, back-

ward saturation begins around 100 seconds, causing a slight drop in pressure. As saturation pro-

gresses, compaction induced by fluid pressure accelerates this process, visible in both kymograph

and video footage. The video reveals notably more compaction around the 65 mmmark. This com-

paction leads to a surge in fluid pressure, followed by significant dilatancy observed as compaction at

both ends with dilation in the center. This central dilation reduces pressure by increasing porosity

and drawing in water. The high-pressure wave moving forwards leads to further compaction and
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eventually breaches the second barrier, while the wave moving backwards reduces pressure at the in-

jection site, demonstrating how compaction and dilatancy can drive diffusive pressure surges along

the fault ? . Similar to the first stage, barrier failure results in a drop in fluid pressure.

The third stage mirrors the second in its pattern of fluid pressure changes: a steady increase, then

a slowing decrease, a prolonged transitional phase, and finally an accelerated decrease. The initial

increase is less pronounced than in the first stage, owing to weaker compaction in this chamber and

the reduced pressure required for fluid drainage. Approximately 40% of the chamber shows clear

compaction. Post-drainage and saturation, dilation at the front of the compaction zone occurs due

to a surge in fluid pressure, with simultaneous forward and backward compaction as seen in the

previous stage. As dilatancy weakens, the decrease in observed fluid pressure slows. The failure of

the third barrier, taking longer than in the second stage, results in an extended transitional phase

before another decrease in observed fluid pressure.

In the fourth stage, the pattern of fluid pressure change simplifies to a brief increase followed by

a nearly constant fluid pressure level. This initial rise is akin to that seen in earlier stages. However,

due to the loose nature of the glass beads, neither dilation nor compaction is observed following

the increase in fluid pressure. To sustain fluid flow under these undrained conditions, a consistent

injection pressure is maintained.

6.3.2 Acoustic monitoring

Using a similar experimental setup, we delve into the temporal characteristics of acoustic signals

throughout the hydromechanical process at varying fluid injection rates. In Fig.6.3, we present

the acoustic data and their corresponding envelopes for injection rates ranging from 2 ml/min to

4 ml/min. Video analysis reveals that the acoustic emissions primarily result from slips between glass

beads. Similar to previous observations, processes such as pressure-driven compaction, dilatancy,

and barrier failure occur, each leaving distinct acoustic signatures, as highlighted by the cumulative
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Figure 6.2: (a) Recorded injecঞon pressure and volume history at the injecঞon point, with an injecঞon rate of 2 ml/min.
A�enঞon is drawn to the highlighted segments. The varied colors represent disঞnct fluid pressure (Pf) fluctuaঞons and
the corresponding physical phenomena, elaborated in the subsequent image. Three repeated pa�erns are observed,
each marked by notable increases and decreases in Pf. (b) Kymograph detailing pixel variaঞons correlated with move-
ments of fluid and glass beads. This visualizaঞon is created by extracঞng a central verঞcal slice from video frames, a[er
subtracঞng a background image, which is displayed on the right for reference. Differenঞaঞng the intertwined effects
of fluid dynamics and bead displacement on light intensity and pixel distribuঞon is complex. However, through manual
review of the animaঞon, we have idenঞfied and labeled the specific physical processes causing changes in pixel intensity
and posiঞon. The associated video is accessible here. Note that due to the video’s large size, it is segmented, analyzed in
parts, and then reassembled. The background image used for reference is rotated by 90 degrees.
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envelopes (green lines). Notably, the dilatancy phase, characterized by numerous slips and acoustic

activity, often culminates in barrier rupture, which is marked by a notable increase in the cumulative

envelope.

The overall duration of these processes is influenced by the injection rate or the rate of pressure

migration. Higher injection rates lead to more significant barrier failures but afford little time for

precursor signals to emerge. In the raw acoustic data, pinpointing the exact moment of barrier fail-

ure can be challenging due to subsequent acoustic emissions. Moreover, variations in fluid pore

pressure contribute to isolated, relatively large slips and pronounced acoustic signals. Despite these

complexities, a thorough analysis of the complete acoustic dataset allows for the identification and

understanding of the primary hydromechanical processes at play.

6.4 Discussions

We have no shear stress placed on the sample. The frictional slip along the interface is not explic-

itly involved. The mechanical deformations observed are solely driven by variations in fluid pore

pressure. These deformations encompass the stretching and breaking of barriers between granular

chambers as well as slips among glass beads and their subsequent movements. Consequently, poros-

ity and permeability emerge as crucial factors influencing fluid pressure dynamics.

Although the porosity can be changed in a variety of ways, such as fracture, slips, granular flow,

viscous flow of the matrix and chemical dissolution-precipitation processes, we shed some lights into

the fracture and slips influenced by the compaction and dilatancy during mass transfer as observed

in our experiments.

Fluid pressure migration and stress changes due to rupture propagation predominantly deter-

mine slip behavior along faults. Elevated fluid pore pressures facilitate aseismic slips, which are

strengthened by dilatancy ? . Such aseismic slips can redistribute stress, potentially inducing earth-
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Figure 6.3: During the hydromechanical process, we captured conঞnuous acousঞc data (depicted in black) at various
injecঞon rates, which are displayed across three panels: 2 ml/min (upper), 3 ml/min (middle), and 4 ml/min (lower).
Superimposed on these recordings are the instantaneous envelopes (in red) and the cumulaঞve envelopes (in green).
Arrows are used to indicate the occurrence of different physical processes.
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quakes ? and slow earthquakes ? . Moreover, slips can reciprocally affect porosity and permeability,

thereby influencing fluid pore pressure ? . This interplay indicates that fault slip phenomena are

intricately interconnected with the processes of dilatancy and compaction within the fault zone.

Our findings illustrate that barriers or zones with a contrast in permeability compared to their

surroundings can induce compaction and dilatancy. Such variability in porosity and permeability is

likely a common feature within fault zones.

Firstly, the rate of compaction is influenced by the fluid pressure (Pf), which in turn can impact

the rate of aseismic slip, essentially affecting the strengthening rate of the fault.

Secondly, the combined effects of compaction and fluid injection can lead to the formation of

high Pf anomalies, potentially contributing to the initiation of rupture. The compaction resulting

from aseismic slips accelerates this process, potentially transitioning to seismic slip.

Thirdly, an increase in Pf is followed by dilatancy, characterized by forward compaction and

backward compaction. Forward compaction near a barrier can amplify Pf in that area, eventually

leading to its failure. If seismic slip occurs concurrently with compaction, the dilatancy effect may

be diminished as Pf is expended in facilitating the seismic slip. Conversely, if seismic slip precedes

dilatancy, the ensuing increase in porosity can amplify the dilatancy effect. Additionally, dilatancy

on its own can slow down seismic slip or reduce the rate of fault weakening.

6.5 Conclusion

In our newly developed experimental setup, we employ both visualization and acoustic monitoring

to observe hydromechanical behaviors under consistent fluid injection rates. Our findings distinctly

highlight phases of compaction and dilatancy preceding barrier failure. Particularly, we observe that

surges in fluid pressure, stemming from compaction, manifest not immediately around the barrier

but rather at the leading edge of the compaction zone, often within the chamber’s central region.
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The breakdown of the barrier is precipitated by forward compaction coupled with pressure migra-

tion occurring during dilatancy phases. An intriguing observation is that backward compaction

leads to a marked reduction in pressure at the point of fluid injection, suggesting that fluid backflow

might be more common in natural settings than previously assumed. Moreover, the pattern of pres-

sure decrease offers a means to differentiate between dilatancy, characterized by a slowing decrease,

and barrier failure, marked by a rapid drop in pressure. Additionally, the accumulation of acoustic

energy reflects ongoing deformation and highlights the significance of the spatiotemporal distribu-

tion of laboratory-induced or natural earthquakes in understanding underlying physical processes.

These laboratory insights are invaluable for enhancing our comprehension and surveillance of fault-

zone hydrodynamics and seismic activity.
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SUMMARY

The detection and picking of seismic waves is the first step toward earthquake catalog building,

earthquake monitoring, and seismic hazard management. Recent advances in deep learning have

leveraged the amount of labeled seismic data to improve the capability of detecting and picking

earthquake signals. While these deep learning methods have shown great promise, their success

remains hindered by low generalizability and poor performance in low signal-to-noise ratios (SNRs)

data. Here, we propose a new processing workflow that integrates pretrained deep learning models,

multi-frequency band predictions, and ensemble estimations to enhance the generalization of these

algorithms. We test the performance of the ensemble model using three benchmark datasets, one

of which is within-domain and has been used for training the deep learning models, the other two

being cross-domain test datasets. We explore the performance given data and model characteristics.

We also compare an ensemble approach with a transfer-learning approach and discuss the benefits

and drawbacks of these two approaches when deploying on continuous data. Our experiments

demonstrate that ensemble learning can drastically improve generalization ability and hence alleviate

the need for transfer learning in the case where no labeled datasets exist.

7.1 Introduction

Earthquake detection and seismic phase picking are the most fundamental steps for cataloging,

monitoring, and alerting earthquake hazards. The detection of earthquakes is often done auto-

matically at seismic networks using features of earthquake waveform as filters (e.g., impulsivity).

The location of earthquakes requires the knowledge of seismic wave travel time between potential

sources and receivers at seismic stations, especially the arrival time of P and S waves. Algorithms exist

for automated picking, though seismic analysts tend to manually pick the arrival phases to improve
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the quality, particularly in noisy waveforms. From these arrival times, algorithms are designed to

rapidly locate an earthquake, associate its magnitude, and broadcast public warnings if the shaking is

expected to damage human infrastructure ? .

Seismology is becoming a big-data field as the volume of seismic data acquired is vastly expand-

ing ? , and as sensing technology is evolving ? . Recently, the design and implementation of con-

volutional neural networks in deep learning (DL) ? for seismic data has dramatically transformed

seismological research. In particular, the contribution of DL in seismology has been in large part

for feature extraction in seismograms to automate the characterization of earthquake sources from

continuous seismic data ? ? ? ? ? .

A particular success in DL for seismological research is the picking of seismic wave arrival times,

a task referred to as “phase picking”. Phase picking is among the top uses of DL in seismology and

is mainly designed as a supervised learning problem that requires large labeled datasets to train from

scratch. The typical workflow is to develop a new architecture of a deep neural network associated

and trained with a specific dataset (either a “standard benchmark” dataset or a user-specific labeled

dataset).

There exist today several popular phase pickers, such as GPD ? , PhaseNet ? , EqTransformer ? ,

Siamese EqTransformer ? , DPP ? , and ARRU ? , which are well-used by the community. There also

exist a number of benchmark datasets to train these models from, SCEDC ? , STEAD ? , Iquique ? ,

LENDB ? , NEIC ? , INSTANCE ? , DiTing ? , PNW ? , and DeepBlue ? . Woollam et al. ? designed

a toolbox SeisBench for interoperable machine learning models and benchmark datasets and user-

friendly access to these various models, which enables systematic investigations of the performances

of model designs and their weights obtained after training on multiple datasets. New users of these

models may refer to Münchmeyer et al. ? to evaluate the appropriateness of specific pretrained mod-

els on the specific use case. Cross-domain performance varies a lot either from different benchmark

datasets or different DLmodels ? , suggesting that generalization capability is rather limited and
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model design may impact the performance of the models on a given dataset. Although the DL

methods for detection and picking have demonstrated their high performance in specific applica-

tions, they still face the challenge of poor generalizability, high noise sensitivity, and overproducing

false results. Researchers have mitigated these limitations with elaborate workflows of multiple-

sequential DLmodels ? ? ? . Recently, Park et al. ? documented the varied prediction consistency of

the DLmodels and provided a strategy to mitigate some of their degraded performance that aggre-

gate models applied on a small stride running window.

Transfer learning, the step of continuing the training of a machine-learning model on a new la-

beled data, is needed to fine-tune the model weights to improve their performance (i.e., picking rate

and accuracy) to new data ? ? ? . Transfer learning typically needs a labeled dataset, making it imprac-

tical to apply to datasets without prior knowledge about phase arrival times. However, as with any

training of DLmodels, limitations in training performance remain due to the quality and diversity

of the training data. In those cases, the transfer-learned model performance may be thus insignifi-

cantly improved for cases without a large and diverse dataset.

The difficulty remains in selecting a specific DLmodel for target study data. For supervised

learning algorithms, the literature only reflects the development of DLmodels specific to particu-

lar datasets. The DLmodels may vary their prediction performance with the training on different

datasets. One can achieve better prediction performance by leveraging and integrating the perfor-

mance of different base models ? ? . In seismology, random forest-based ensemble learning has been

successfully utilized for laboratory earthquake prediction ? and earthquake wave discrimination ? .

There remain opportunities to bring ensemble learning to DL frameworks.

This study proposes to leverage the diversity of the training datasets to improve the DL perfor-

mance and the generalization for earthquake detection and phase picking. We augment bagging

(one aggregation method, ? ) by making predictions over multiple narrow-bandpass versions of the

seismic data. We explore various ensemble techniques, such as maximum, semblance, and meta-
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Figure 7.1: An ensemble esঞmaঞon-based framework for earthquake detecঞon and phase picking. The main compo-
nents include base predicঞons at broadband or mulঞple frequency bands (e.g., filtered data) and ensemble esঞmaঞon by
either staঞsঞcs-, coherence-, or a learning-based approach. Note that only EqT-based pretrained models are tested.

learner, to compare the performance of phase picking. We test on within-domain datasets and cross-

domain data with a comparison with a transfer-learned model, which tests the model’s performance.

Finally, we deploy the phase picker on continuous data and find a much-reduced rate of spurious

detections.

7.2 Methodology

We develop a framework comprising two essential workflows that we illustrate in Fig.7.1: 1) mul-

tiple individual model predictions and 2) aggregation (ensembling). We refer to this workflow as

Ensemble Learning Earthquake Prediction (ELEP).

The first component utilizes DL-based models to predict the input three-component seismo-

grams trained on multiple datasets. The framework may include multiple model architectures, each

of which can be trained on different datasets for pretrained models with different neural weights.

Here, we call models that are DLmodels with either different architectures or pretrained weights as
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“base models”. We apply individual base models either on the raw data (broadband) or on filtered

data (multiband) to generate multiple predictions on the same input seismograms. The predictions

of interest are two time series of probabilities of the P- or S-phase in the input seismic data. The sec-

ond component involves sequential ensemble estimations that aggregate all predictions to obtain the

final arrival times of the P- and S-phases.

7.2.1 Part I: Broadband and multiband predictionworkflows

The base models typically solve classification problems: they take input data as three-component

seismograms of length 6000 (i.e., 60 s at 100 Hz), and they output three channels, respectively, for

detection, P-phase, and S-phase time series probabilities. These probability time series share the

input size, i.e., identical time sample length.

The base models have been trained with datasets that have various spectral content. For exam-

ple, the original PhaseNet was trained on raw data from southern California that the authors com-

piled ? , while the EqTransformer (EqT) we will use was retrained by ? using 1-45Hz filtered data

from STEAD that compiles local and regional data from around the world ? ? . The noise present

in the original dataset influences the model performance. For instance, Yin et al. ? found that using

the benchmark dataset STEAD but adding seismic noise local to the station improved the ability of

deep neural networks to characterize earthquake signals.

We propose two workflows to obtain predictions of those probabilities: a broadband (BB) and

a multiband (MB) prediction, as shown in Fig.7.2a and b. The first one is straightforward and uses

broadband (1-45 Hz) seismograms as the input to the base models. However, this approach is noise-

sensitive, particularly for low-amplitude signals or low-magnitude earthquakes ? . To mitigate this,

we develop the second prediction workflow based on multiple frequency bands, summarized in

Fig.7.2b. We add two steps for the MB prediction compared to the BB one. We first decompose the

signal into multiple frequency bands, as illustrated in Fig.7.2d for the vertical component of the
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Figure 7.2: Example of ELEP workflow. (a) Broadband predicঞon scheme. (b) Mulঞband predicঞon scheme. (c) Example
three-components seismogram. (d) Time-frequency signals decomposed by a recursive mulঞband filter. (e) The predic-
ঞons of these filtered signals are obtained and compared between broadband and mulঞband predicঞons, denoted as
solid and dashed lines, respecঞvely. Detecঞon, P-phase, and S-phase picking are represented as orange, blue, and green
lines, respecঞvely.

seismograms. Time-frequency representations can be realized by either the short-time Fourier trans-

form, a wavelet-based transform, or the S-transform ? ? , but these transforms are computationally

prohibitive and considerably limit the deployment of these workflows on continuous data. We use

the recursive multiband filter (MBF) performed in the time domain proposed by Poiata et al. ? , a

filter adapted from Lomax et al. ? as an efficient alternative for picking seismic phases in real-time

earthquake monitoring. We filter the data into ten frequency bands to balance computational effi-

ciency and prediction effectiveness in design choice. We illustrate an example of such decomposition

in Fig.7.2d. Each filtered or narrow-band signal is put into the DLmodel for individual predictions.

The DLmodel utilized in the BB prediction is directly adaptive to the MB prediction without de-

signing new DLmodels. We thus perform ten BB-like predictions for eachMB prediction. Each

of the predictions from the original EqTmodel ? has three-channel time series outputs: detection,

P-phase picking, and S-phase picking probabilities. We show predicted results for all ten frequency

bands as solid lines in Fig.7.2e (lower panel). In the MBF workflow, each forward model has ten
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predictions, and we perform the first level of aggregation by selecting the given prediction with the

highest probability (thick lines) in each of the three outputs (detection, P-pick, S-pick), which we

call the “optimal output”.

Comparison between the BB andMB predictions are shown in Fig.7.2e. Even with the simple

and obvious example shown in Fig.7.2c, the optimal MB predictions (thick lines) have much higher

probabilities and retain the prediction accuracy of individual predictions as inferred from the tem-

poral width of these time series of probability. TheMBF provides more representations of the data,

some of which may be more familiar to the trained DL base model. We conclude from this exper-

iment that the MBF enhances the confidence of the DLmodel upon the predictions on multiple

signal transformations.

7.2.2 Part II: Ensemble estimations and predictions

This step aims to aggregate the prediction frommultiple base models, treat them as an ensemble,

and combine them for an improved prediction. In the following, we ignore the detection branch

that some models may output (e.g., the EqT) and focus on P and S arrival-time picks.

We propose and develop three distinctive methods for ensemble estimation: statistical-, coherence-

, and learning-based approaches. Each of these methods is independently capable of generating the

final prediction. We illustrate the concept in Fig.7.3 using BB predictions. We gather the individual

base predictions from eighteen pretrained models: PhaseNet, GPD, and EqTmodels, each trained

on six different training data. Fig.7.3a and b illustrate the predictions for the P-phase and S-phase

for a given example waveform. In this study, only six EqT-based pretrained models are utilized for

computational efficiency.
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Figure 7.3: Example of ensemble esঞmaঞon for three aggregaঞon methods. (a) P-phase probabiliঞes and (b) S-phase
probability funcঞons predicted by 18 pretrained models. Deep colors denote high probabiliঞes. (c) Maximum-based
ensemble esঞmaঞon from six EqT predicঞons (thin lines) for P-phase and S-phase probability funcঞons (thick lines).
(d) Semblance-based ensemble esঞmaঞon from six EqT predicঞons for P-phase and S-phase probability funcঞons. (e)
Learning-based ensemble esঞmaঞon for P- and S-phase probability funcঞons. Note that only six 20-seconds EqT-based
predicঞons are used as the input here.
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Maximum-based ensembler

For the statistics-based ensemble estimation, we identify the prediction with the greatest probability

by applying the maximum function. This process is independently conducted for both the P- and

S-phases, as articulated in the following equation:

Pbmax = MAX(Pb1,Pb2, ...,Pbm), (7.1)

where Pb is the predicted probability trace of P or S phase,m is the index of the DLmodel for prob-

ability prediction, andMAX denotes the maximum operator.

Fig.7.3c illustrates with an example the results of the maximum ensembling: the peaks of these

predictions (thick lines) are the probabilities of the arrival times of the P- and S-phases.

Semblance-based ensembler

The second method is a coherence-based ensemble estimation method to predict the final probabil-

ities, which applies semblance analysis to coherence estimation, a practice widely adopted due to its

demonstrated robustness and computational efficiency ? . The original semblance C0 (for either P or

S wave) can be determined with each modelm probability Pbm as follows:

C0(ti) =

∑ti+δt/2
ti−δt/2(

∑M
m=1 Pbm)2

N
∑ti+δt/2

ti−δt/2(
∑M

m=1(Pbm)2)
, (7.2)

where ti stands for the ith time sample, δt is the length in seconds of the time window. This could

be considered through the shape length of the phase probability label. Here, we choose an optimal

time length of 0.5 s after multiple tests. M is the number of DLmodels used for predictions. The

coherence of probabilities is measured at each ti centered in the time window. This original sem-

blance analysis effectively measures coherence across probability traces but may enhance noise or
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artifacts. Therefore, we modify the original version to weight the coherence according to the follow-

ing weightsW:

W(ti) = MAX(Pb1(ti),Pb2(ti), ...,Pbm(ti)), (7.3)

where the weightW(ti) is defined as the highest one among all probabilities at the time point ti.

We finally write the semblance:

C(ti) = W(ti)C0(ti)ν. (7.4)

where the exponent ν = 2 is set to balance the suppression of noise and signal coherence. The sem-

blance analysis is performed individually for the P- and S-phases. Fig.7.3d shows the final coherence

traces, in which the peaks point to the phase arrivals accurately.

While both previously mentioned methods can be utilized to predict probability traces, each

exhibits limitations. First, the ensemblemaximum is only picking the maximum probability and,

therefore, is sensitive to the bias of the highest probability. In experimenting with the method, we

find that the method achieves a high picking rate but is also susceptible to larger picking errors. Sec-

ond, the ensemble semblancemethod, while prioritizing probability consistency, often compromises

on picking rate to output with low coherence. Finally, both methods still output time series that

require an additional post-processing step of peak detection and thresholding to decide on a positive

outcome. We, therefore, propose a third method that overcomes these limitations.

Meta-learner ensembler

The base models are treated for solving classification problems: they output three channels with

time series of probability where every timestamp is a class. For the EqTmodel, the second and third

time series are outputs for the probability of seismic phase arrivals in the window. We skip the detec-

tion probability as we focus on phase picking. Users then decide on thresholds to pick phases, which
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adds a hyperparameter to choose the appropriate threshold. By construction, the two previously

mentioned ensemble methods also need a hyperparameter for such a final decision.

The seismic phase picking is intrinsically a regression problem. Therefore, there remain oppor-

tunities to adapt the base models and predict scalar values of the phase arrival times. Regarding the

base models as weak learners, we add a meta-learner to transform these classification models into

regression.

We propose such a meta-learner to be a convolutional neural network (CNN)-based learning ap-

proach, leveraging its robust capabilities in pattern recognition and semantic comprehension ? . We

use PyTorch and its taxonomy for neural networks ? . Fig.7.3e illustrates the primary architecture of

the CNN, comprising four convolutional neural network blocks and three fully connected neural

networks (Linear). Each convolutional block incorporates a convolutional layer (Conv2D) ? , batch

normalization (BatchNorm) ? , a rectified linear unit (ReLU) ? , and max pooling (MaxPool) ? . The

input data is a 3-dimensional tensor, in which the dimensions sequentially refer to the size of batch

prediction, six base probability predictions for each trace, and 20-second (2000 time samples) proba-

bility prediction truncated from previous base predictions. The dimension of each layer is described

in Fig.7.3e. We create two independent models to treat respective P and S and avoid the model to

learn the relative time between P and S (e.g., earthquake location). The output of the meta learner is

a single scalar value of travel time, either Tp or Ts, representing the time since the trace starts.

In this concept, any combination of base models that provide the same output size will be possi-

ble. In practice, we found that loading many models in memory was a high computational cost and

restricted our base models to the EqT trained on six different datasets.

7.2.3 Model Training

The meta-learner is a regression problem. Therefore, we use a mean-square-error (MSE) loss func-

tion. We choose the Adam optimizer for weight updates, and a learning rate of 0.2 ? . The model is
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small, and the training is efficient since these probabilities are relatively simple compared to learning

this directly from waveforms. Additionally, the CNNmodel has robust performance, as later seen

in its weak dependence on data size. However, the ensemble learner struggles to eliminate the cate-

gorically spurious probabilities, rendering it prone to estimation errors on any given input. Despite

its ability to yield reasonable picking results under low and inconsistent probabilities, the error rate

is currently unfit to function independently. The erratic behavior of this simple learning leads us to

add a constraint to the predictions.

Therefore, we integrate the ensemble learner with either ensemble maximum or ensemble sem-

blance, as depicted in Fig.7.1. These preliminary ensemble estimations can discern signals from

noise and provide reference phase picks. We truncate the output predictions for 20 seconds around

the maximum or semblance ensemble picks and use these truncated probability time series as input

to the meta-learner. The ensemble learner is subsequently deployed as the final prediction, with the

aim of enhancing prediction accuracy. In essence, drawing parallels with the widespread bagging

and stacking ensemble learning methods ? , we conclude that our framework is primarily driven by

ensemble estimations.

7.3 Performance of ELEP framework

We propose to test the performance of the ELEP framework in three separate contexts. First, we

take the approach of ML developers in seismology, who typically use benchmark datasets. Second,

we take the approach of ML users in seismology with plenty of labels that might continue training

(transfer learning) the base models to a specific region. Third, we take the approach of seismologists

who want to deploy these models on waveform data in a completely different seismic environment

on the sea floor.

We perform both broadband and multiband predictions from six pretrained models. These mod-
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els are called eqt-original, eqt-ethz, eqt-instance, eqt-scedc, eqt-stead, and eqt-neic, named with the

model architecture hyphened with the training dataset. Further details of these pretrained models

are referred to in the SeisBench documentation ? . The base model predictions for each seismogram

are the probabilities for detection, P-, and S-phase. A detection, P-, and S-phase picking are suc-

cessful for their respective probabilities above threshold values of 0.1, 0.1, and 0.05. For maximum-

based ensembler, we set the probability threshold values of 0.1 and 0.05 for P- and S-phase picks.

For coherence-based ensembler, we set the corresponding probability thresholds to 0.05 and 0.05 as

the coherence is compromised across predictions.

Following the EqTmodel training protocol ? , each seismogram is pre-processed by truncating

the time series to 60 seconds and filtering the data between 1 and 45 Hz using a Butterworth filter

of a 4th-degree pole. The processing uses the ObsPy python package ? . Some data are three-channel

seismograms. Some data may be single-channel components with two channels filled with zeros.

We use several performance metrics in the following tests. First, the detection and pick rates de-

pend on the threshold values discussed below. More than one event can be processed and returned

through probabilities that exceed thresholds. Second, the pick errors are found by measuring the

arithmetic mean (bias) and standard deviation (variance, standard picking error) of the residuals

between the phase pick predictions and their ground truth labels. Unlike other studies that ignore

many outliers with residuals larger than around 0.5s ? , we use the residuals under 2s for calculating

the arithmetic mean and 10s for calculating the standard deviation to keep at least 80% low-quality

phases and 90% high-quality phases.

7.3.1 Performance analysis on the INSTANCE dataset

In this section, we take the approach of anML developer for seismology. We test the performance of

our workflow against benchmark datasets. We use INSTANCE as a test dataset. The INSTANCE

seismological benchmark dataset contains over 1.3 million waveforms from local earthquakes in
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Italy ? . We arrange the seismograms into 15 groups based on their respective Signal-to-Noise Ra-

tios (SNRs). We randomly select 15,000 seismograms from each SNR group to ensure an equitable

comparison and optimized computation. Each waveform has “ground truth” labels for the P and

S picks. Some of the INSTANCE data may also be contained in other benchmark datasets, such

as STEAD and NEIC. We randomly select 3,000 waveforms out of each SNR group of the IN-

STANCE data to generate a training dataset for the ensemble learner. We leave 12,000 other wave-

forms for testing. This simulates the case of limited training data.

Broadband and multiband predictions

We first evaluate the performance of the multiband workflow using within-domain predictions

with the eqt-instance model trained on the INSTANCE data. We apply the prediction workflows

separately on the fifteen SNR groups and show the results in Fig.7.4. Because we make 15,000 pre-

dictions in each SNR group, we show the results in the form of arithmetic means (biases) and stan-

dard deviations (standard picking errors) over these distributions for broadband and multiband

predictions in Fig.7.4a-c for the detection rate, the P, and the S pick errors. As expected for within-

domain predictions, the eqt-instance performs well because it has recognized most of the test data.

The broadband waveforms tested are likely the training data for eqt-instance, therefore yielding high

accuracy in predictions.

We now discuss the differences between broadband and multiband predictions. For both sets

of predictions, the performance increases with SNR levels. The performance is generally lower for

broadband seismograms than for multiband predictions. The detection rates are lower by about

5% across all SNR groups. The P-wave picking rates and uncertainties are somewhat similar, with

a much-improved performance with the SNR level. S waves are generally poorly picked, which is a

general problem in seismology that yield much lower picking rates and larger uncertainties. Multi-

band predictions greatly improve the picking rate, while broadband predictions only go from 80%
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Figure 7.4: Within-domain broadband and mulঞband predicঞons on the INSTANCE test dataset using the eqt-instance
model for (a) detecঞon, (b) P-phase picks, and (c) S-phase picks. Detecঞon and picking rates are gray (broadband predic-
ঞons) and orange (mulঞband predicঞons) markers. P and S pick mean errors (e.g., bias) are shown in blue (P broadband),
green (S broadband), and red (P and S mulঞband). The error bars are the standard deviaঞons of picking residuals. Note
that the shi[s of pick-error markers in (b, c) are deliberately made to avoid overlapping and for clear visualizaঞon.

to 95% with the SNR.

However, the increased detection and picking rates of the multiband predictions bring greater

uncertainties and biases. The broadband and multiband both have a bias of about 0.1s in their

predictions. We attribute this to inherit from the base model performance issues, which were also

apparent in ? .

The next exercise tests the generalization of these models (e.g., ? ) and the performance of the

multiband variant. We now contrast the within-domain predictions with the cross-domain predic-

tions. We gather all measures of performance (detection and picking rates and standard phase pick

error) and show them in Fig.7.5. We ignore the mean picking errors (i.e., the biases) because they are

small similar to the ones in Fig.7.4.

For the event detection results, the eqt-ethz and eqt-neic perform comparably well with the eqt-

instance, which is reasonable because the former two pretrained datasets include data similar to

INSTANCE. This is not strictly cross-domain predictions due to the data leakage. The other three

base models (eqt-original, eqt-scedc, and eqt-stead) perform worse than the eqt-instance on wave-

forms with low SNR but perform comparatively with eqt-instance on the data with SNR over 10.

This suggests that the generalized capability of pretrained models is reasonably well for high SNR
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Figure 7.5: Cross-domain broadband and mulঞband predicঞons on the INSTANCE test dataset for six EqT-based pre-
trained models for (a) detecঞon, (b) P-phase picking, and (c) S-phase picking. The pretrained models are denoted by
different symbols. Gray symbols illustrate detecঞon and pick rates from broadband predicঞons. The orange symbols
display the corresponding detecঞon and pick rates from mulঞband predicঞons. Blue and green symbols indicate stan-
dard picking errors of broadband P- and S-phase picking residuals, respecঞvely. The red symbols represent standard
mulঞband-predicted errors for comparison.

data but will fail at low SNR data. We attribute this to the noise of the data, which may be region-

specific, but the seismic characteristics of earthquakes are global. The multiband predictions allevi-

ate the noise effect from frequency bands and give rise to higher detection probabilities. Detection

rates are thus increased compared to broadband predictions.

As previously shown for the within-domain prediction, the multiband prediction workflow

also improves the picking rate, especially for S-wave picks (see Fig.7.5c and f). Similarly to our pre-

vious within-domain prediction, the additional picks have more errors. This is particularly true

from the NEIC dataset, which includes local, regional, and teleseismic earthquake signals, and may

not be well labeled ? . Interestingly, we find that the eqt-scedc performs even better than the eqt-

instance in terms of pick rates, but it also has a larger variance in pick errors. We postulate that the

reason behind the high picking rate of the eqt-scedc is that the scedc dataset includes much more

low-SNR data for training, though we can only guess since DLmodels tend to be trained on aug-

mented data ? . This suggests that the involvement of more well-labeled low-SNR data may improve

the model performance. Overall, the multiband prediction performs better than the broadband pre-

diction. S-phase picking performs much worse than the P-phase, which further states the accurate
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Figure 7.6: Effect of probability thresholds on (a-c) broadband and (d-f) mulঞband predicঞons on the INSTANCE. The
symbols stand for different pretrained models. The orange and gray symbols represent the detecঞon rate and P- or
S-phase pick rate, respecঞvely. The blue and green symbols denote the mean P- and S-phase pick errors in seconds,
respecঞvely. The error bars indicate the standard deviaঞons associated with the mean pick errors.

picking of S-phases is still challenging.

The selection of probability thresholds influences the decision. Low threshold values imply

higher detection and picking rates but lower quality (greater error) in the picking values. We show

the variability of prediction performance in terms of detection rate, P-phase pick rate and error, and

S-phase pick rate and error when varying probability thresholds from 0 to 0.5 at the interval of 0.05.

We show the results in Fig.7.6. Detection and pick rates decrease with increased thresholds but at

different rates with different models.

Broadband predictions are much more sensitive to thresholds (Fig.7.6a-c) than multiband predic-

tions (Fig.7.6d-f). This means that choosing a multiband workflow is less sensitive to hyperparam-

eter tuning. Naturally, the multiband predictions have much-improved performance because the

workflow increases the predicted probabilities, and more predictions meet the threshold. We con-
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clude that the multiband workflow increases the predicted probability, therefore, the detection and

pick rates. However, it also gives more errors in the picks of phase arrival times.

Performance of ensemble models

With the predicted results from all pretrained models, we use three ensemble estimation methods to

obtain the final picks: maximum, semblance, and learnable. The estimation methods have been de-

scribed in section II of this chapter. We now discuss the ensemble performance with examples that

include the picking predictions from six pretrained models and three ensemble estimations from

high-SNR to low-SNR data in Fig.7.7. The first two models output a time series of probabilities

with the same dimension as the base models. The meta-learner transforms the multi-class classifiers

(base models) into regression and is only shown as tick marks on the seismic waveforms in Fig.7.7.

The examples shown in Fig.7.7 have relatively low SNR values. S waves are difficult to pick, yet

the DLmodels predict a reasonable value around the ground truth label. The examples illustrated

here highlight the variability among the model predictions for the same waveforms and how the

maximum and semblance models predict.

We first compare the two first ensemble learning methods. The ensemble maximummainly de-

pends on the probabilities with the highest values, regardless of their accuracy. The multiband

workflow is effectively a maximum-ensemble method, and we have demonstrated that it increased

the detection and pick rate but also increased the errors. Therefore, we can expect the maximum

ensemble model also to bring more detections but less accurate picks.

In contrast, we expect the semblance-ensemble model to depend rather on the consistencies of

the values. The examples shown in Fig.7.7 illustrate that the resulting probabilities are lower by

nature of the product of the individual models. A user must choose a lower threshold value for the

same confidence in the picks.

We now compare them over a broad test dataset. The test dataset contains the 12,000 waveforms
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Figure 7.7: Example predicঞons with pretrained models and ensemble esঞmaঞons on four mulঞ-channel seismograms
from the INSTANCE dataset. The dashed lines mark the labeled (or true) arrival ঞmes of the P- and S-phases. The solid
lines denote the arrival ঞmes esঞmated by the learnable ensemble, which are only shown on the E components but
calculated over the three channels. The lower plots show the probability distribuঞons annotated with their respecঞve
base models. The upper probability distribuঞons are annotated from the esঞmaঞons by two simple ensemble methods
(maximum and semblance). The P-phase and S-phase probabiliঞes are plo�ed in blue and green, respecঞvely.
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of each SNR group not used for training the meta-learner (see previous section for details). All

models improve performance (i.e., pick rates and errors). We show results in Fig.7.8. Similarly to the

comparison between the multiband and the broadband methods, the maximum-ensemble method

detects more events (e.g., higher P- and S-phase pick rates) but with larger errors.

In this exercise of deploying these models on ground truth information, we observe that a greater

picking rate frommaximum-based ensembling may yield large errors: pick errors of several seconds

may imply the picking of spurious arrivals that would become impractical for earthquake location

techniques. Ensemble learning is a large step of improvements, with errors twice as small, relative to

a pick rate reduced by 10%.

7.3.2 Performance analysis on the PNWdataset

We now explore the cross-domain performance of the ensemble methods relative to new, unknown

data and compare to transfer-learning one of the base models with a new ground truth dataset in the

Pacific Northwest of the United States. The PNW region has a relatively low seismicity rate com-

pared to the active tectonics of the region. While there might be some PNW data in STEAD, we

believe data leakage is not consequential. The PNW datasets ? contain regional earthquakes with

relative travel time between P and S greater than one minute (the window length of the eqt-base

models). The PNW data is not used to train the base models and serves as independent data to test

the generalizability of our machine learning model. We have also retrained the EqT using 70% of

the PNW data, so about 130,000 waveforms in previous work ? . We use the ComCat datasets that

include roughly 180,000 earthquake and explosion seismograms. The resulting model is called eqt-

pnw. In this case, we do not select based on SNR groups but exclude approximately 1,000 seismo-

grams with too large of relative arrival time between Ts − Tp > 60s.

Similarly to our analysis with the INSTANCE dataset (Fig. 7.4 and 7.5), we test the individual

model predictions with the PNW data. We find similar results in the cross-domain predictions.
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Figure 7.8: Esঞmaঞons of three ensemble methods on the INSTANCE dataset. (a, b) Broadband predicঞons. (c, d) Mulঞ-
band predicঞons. Circles and squares represent P- and S-phases, respecঞvely. Gray symbols indicate pick rates, while
colored symbols show the standard deviaঞon of the residuals for different methods. The predicঞons of the learnable
ensemble are performed on the results of the maximum ensemble and semblance ensemble.
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Overall, the performance increase with SNR is less apparent, which we attribute to the various wave-

forms per SNR bin. In general, the cross-domain results show that earthquakes can be detected

with another model, which assesses some of the generalization power of the base models. Again,

the pick errors can be significant, especially for S waves, and become impractical for continuous de-

ployment and earthquake location. We also confirm that the multiband results exhibit an improved

performance again: increased detection and pick rates but without the cost of an increased pick

error compared to the INSTANCE case.

We now focus on comparing the transfer-learned model (i.e., eqt-pnwmodel) against the en-

semble models. We train the learnable ensembling method using 3,000 waveforms from each SNR

group, leaving the other waveforms in the test set. In Fig. 7.9, we show the results of pick rates and

errors when comparing transfer-learned against the multiple workflows (ensemble techniques and

broadband vs. multiband) on such test data.

We apply the eqt-pnwmodel to pick the test data used for ensemble estimations, although a big

portion of the testing data has been exposed to the model for training. As such, we expect the rates

and errors to be small from training. In general, the pick errors of all models are comparable, ex-

cept for the maximum+learning ensemble models (Fig. 7.9). The maximum ensemble gives greater

pick rates than transfer learning, especially at intermediate SNRs, but the pick errors are also much

larger.

Semblance ensemble models behave similarly or better than the transfer-learned model in terms

of picking accuracy. The pick rates are lower for semblance learning but also more accurate. This in-

dicates that the semblance model generalizes relatively well to new areas or as much as what transfer-

learning would do. The learnable ensemble model aided by the semblance model is comparable with

the eqt-pnw, with the trade-off of picking rate versus accuracy.

Therefore, this first test on benchmark datasets demonstrates that ensemble learning is as effective

as a transfer-learned model. However, it does not necessitate training a learning-based ensemble to
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Figure 7.9: Transfer against ensemble learning in the PNW. Results from three ensemble esঞmaঞon methods against
test data SNR of the PNW data. (a, b) broadband workflows, (c, d) mulঞband workflows. Transfer learning of the eqt-
pnw model is compared to (a, c) maximum ensemble and maximum + learnable ensemble and (b, d) semblance ensemble
and semblance + learnable ensemble.
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obtain satisfactory performance.

Given the simplicity of the learnable ensemble method, we now explore the performance of the

ensemble model with the size of the training data (Fig. 7.10) for two situations: training on the IN-

STANCE (some within-domain) and on the PNW (nearly complete cross-domain). We select the

data of equal amounts from different SNR groups. Because small biases have been observed in pre-

vious cases ? ? , we explore these as the mean absolute errors (MAE) and the standard picking errors

(standard deviation). The training is done quickly over 20 epochs. We find rapid convergence of the

training with the amount of training data: 1000 labeled data already provides acceptable errors and

is improved until a few 1000s. This demonstrates that little data is needed to achieve good perfor-

mance in ensemble learning.

7.3.3 Blind test onOcean Bottom Seismometer (OBS) data

Seismic data collected on the sea floor have distinct seismic signals from seismological research,

mostly on land seismic data. The seismic signals are largely impacted by oceanic noise that pollutes

earthquake signals ? . Therefore, data obtained fromOcean Bottom Seismometers (OBS) present

a considerable challenge to test our ensemble learning approach. We use the recently published

benchmark datasets by ? to test the model performance. It is typical to work on bandpassed data

in offshore seismology, as whale calls and other oceanic wave signals may contaminate the seismo-

grams ? .

We focus on performance tests on the two non-learnable ensemble learners (maximum and sem-

blance) in the multiband predictions. The test is completely cross-domain without any possible data

leakage, given the recent compilation of the benchmark datasets. We illustrate the performance of

the two ensemble learning models on the predictions of P and S picks in Fig. 7.11. Consistent with

previous tests, the ensemble semblance demonstrates superior performance over the maximum en-

semble in terms of Mean Absolute Error (MAE), Median Absolute Deviation (MAD), and Root
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Figure 7.10: Effects of training data size on the performance of learnable ensemble predicঞons. (a, b) Broadband and
mulঞband learnable ensemble predicঞons for INSTANCE dataset. (c, d) Broadband and mulঞband learnable ensemble
predicঞons for PNW dataset.
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Mean Square Error (RMSE), even though the ensemble maximummethod results in more picks

than the ensemble semblance. As expected, the picking results of the P-phase are superior to those

of the S-phase. We report that our results are better than those obtained transfer-learned model as

documented in ? , without retraining. For P waves, we predict an RMSE is 0.21 (they predict 0.33),

MAD is 0.01 (they predict 0.07), MAE is 0.08 (they predict 0.32) with fewer outlier factors (0.06 in

our case, 0.07 in their case). Our results for S waves are also improved by a factor of approximately

40%. These results are encouraging that deploying a multiband semblance ensemble will provide a

good algorithm for the continuous deployment of OBS data.

We perform an additional test to train the ensemble learner on the OBS benchmark data set ? . We

report a decreased performance for the phase picks. This could be attributed to large biases across

data predictions, which is difficult for the learnable ensemble. Given that the original semblance

predictions were better than the transfer model, we suggest the use of the semblance ensemble as a

sufficient workflow for simplicity.

7.4 Deployment on continuous data

One goal of these models is to detect and pick direct wave arrival times on continuous data. We

demonstrate the prediction performance and computational cost using a four-hour seismic wave-

form captured by borehole station PB.B204, located near Mount St. Helens in the Pacific North-

west. A borehole sensor is an appropriate choice for this test because borehole instruments are a lot

quieter than surface measurements.

To prepare the continuous waveforms for analysis, we first perform a few preprocessing oper-

ations: i) resampling to 100 Hz and detrending (using the ObsPy function detrend), ii) filtering

within a fixed frequency band (1-45Hz) using the ObsPy function bandpass, and iii) trimming the

data into 60-second windows with a 50% overlap, resulting in a total of 479 windowed waveforms.
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Figure 7.11: Ensemble learning on OBS benchmark data. Histograms of P and S pick errors between the manual picks
and esঞmated picks from maximum ensemble (a, c) and semblance ensemble (b, d). The ensemble esঞmaঞons are per-
formed upon mulঞband predicঞons. The outlier fracঞon is the fracঞon of outliers with pick errors larger than 1s. MAE,
MAD, and RMSE denote mean absolute error, median absolute deviaঞon, and root mean square error, respecঞvely.
The verঞcal gray and red dashed lines represent the median and mean pick errors, respecঞvely. Both median and mean
values are influenced by uneven errors.
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Figure 7.12: Predicঞon results on 4-hour conঞnuous seismograms recorded by borehole broadband seismometer at
PB.B204. Predicঞon on the waveforms shown on the data itself. The first panel is conঞnuous ঞme series for the three
channels. The second panel shows the probability results predicted by six pretrained models individually. The third panel
shows the probability results predicted by the transfer-learned model (eqt-pnw). The fourth and fi[h panels show the
results esঞmated from the maximum ensemble and semblance ensemble, respecঞvely. The picking results of the P and
S-phases are marked in blue and green. The dashed red lines represent the probability or coherence threshold for the
picking idenঞficaঞon.
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Figure 7.13: Computaঞonal efficiency on 4-hour conঞnuous seismograms recorded by borehole broadband seismome-
ter at PB.B204. Computaঞon cost in milliseconds (ms) of all steps processing the conঞnuous waveforms in (a). These
steps include preprocessing (le[ side), six successive pretrained predicঞons, one transfer-learned predicঞon, and two
ensemble esঞmaঞons (right side). The comparison between CPU and GPU is also performed for predicঞon steps. The
preprocessing and ensemble steps are only conducted on the CPU.

Next, we apply the six pretrained model predictions and the eqt-pnw (transfer-learned) prediction

using batch prediction.

We predict phase picks from the maximum-based and semblance-based ensemble methods based

on the six pretrained models. Fig.7.12 shows the probabilities of picks for P and S waves on the con-

tinuous time axis. The test on continuous data suggests that predictions from the individual base

models (cross-domain) and the maximum ensemble model give rise to so many high-probability pre-
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dictions that many must be artifacts and false positives. These artifacts are problematic in building

an earthquake catalog because they need to be further analyzed with other stations to be selected or

dismissed. Furthermore, errors may also occur for the picking arrival times, yielding poor estimates

of earthquake locations.

The best model predictions are from the semblance ensemble and transfer-learned models. The

ensemble model predicts the four events and appears to suppress the rest as noise. The transfer-

learned model (eqt-pnw) picks up three events, missing a pair of P and S picks from two events. We

also compare the results with the PNSN catalog of phase picks, which only includes two events.

These picked events are visually relatable to small earthquakes. When using a nearby surface station

(UW.SHW), we report that the transfer-learned model performs much worse than the ensemble

model. Repeated tests also demonstrate that the ensemble semblance behaves more robustly by

picking fewer false positives compared to the ensemble maximum and compared to the individual

base models. Furthermore, it consistently detects and picks more events than the transfer-learned

model does. We inspect detected events individually, which are all low-magnitude earthquakes and

picked up with accurate phase arrivals.

The computational cost of deploying the proposed framework is crucial for considering the de-

ployment “at scale” of the proposed phase picker. All the steps of the workflow are serialized and

do not include obvious improvements such as parallelization. Fig. ?? shows the processing time for

batch predictions in both CPU and GPU environments within Google Colaboratory (T4 instance).

The figure illustrates the case for one 4-hour continuous data. We also compare the computing cost

of individual batch predictions from base models. The multiband workflow requires ten predictions

per windowed waveform and therefore takes ten times longer to predict. Given the lack of a CUDA

version for multiband filtering, multiband processing requires significantly more time than standard

processing. However, parallel processing could alleviate the computational load with multiple pro-

cessors. Example tutorials on deploying ELEP on continuous data are listed in the acknowledgment
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section.

7.5 Discussion and Conclusion

We have developed a sophisticated framework that integrates existing pretrained models with ensem-

ble estimations for earthquake detection and seismic phase picking. The effectiveness of this frame-

work has been substantiated through testing on two established benchmark datasets (INSTANCE

and PNW), a blind test on a recent dataset (PickBlue), and continuous data. Our framework is pri-

marily comprised of two main components.

The first is a Multiband Filter (MBF)-based prediction workflow to generate baseline detection

and picking predictions for each pretrained model. This methodology, although more computa-

tionally demanding, outperforms traditional broadband predictions by enhancing event detection,

phase picks, and overall picking accuracy. Multiband workflows overall outperform the broadband

workflow, especially at low SNR levels. This is promising to detect robustly new small events that

are masked by ambient seismic noise.

Second, we introduce three ensemble estimation methods: ensemble maximum, ensemble sem-

blance, and ensemble learner. The first two estimations (maximum and semblance) are deployed for

phase detection and to establish reference final picks. The results from these two estimations may

be input in a third ensemble model to predict the scalar values of P- and S-phase picks. Remarkably,

the ensemble learner’s accuracy is on par with transfer-learning or within-domain predictions, with

picking detection contingent upon ensemble maximum or ensemble semblance. We find, in gen-

eral, that the semblance ensemble method provides accurate and conservative detection of P and S

picks in seismic data. Overall, P and S picks are much improved compared to the predictions from

individual base models. A blind cross-domain application on a new benchmark dataset of OBS

demonstrates impressive performance in predicting the P and S picks without the need for transfer
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learning.

Certain limitations remain. First, the computational expense of the multiband predictions is con-

siderable. The computational cost scales linearly with the number of frequency bands and the num-

ber of base models chosen. Users may decide on the frequency bands appropriate for their research

applications considering characteristic frequencies of the earthquake signals and seismic noise. For

instance, researchers may anticipate the frequency band of the earthquake signals relative to the lo-

cal noise and decide on corresponding frequency bands that would optimally separate them. The

broadband prediction may suffice for common seismic monitoring. Furthermore, we find for the

maximum ensemble that by increasing the true positive rate (recall) and identifying more false neg-

atives, the ensemble methods could potentially increase false positives, thereby reducing precision.

Therefore, to maintain a high Area Under the Curve (AUC, one performance measurement of clas-

sification thresholds) value, it might be beneficial to set a higher selection threshold. We refer to

Münchmeyer et al. ? for a detailed performance evaluation of broadband predictions. Semblance

ensembling provides a good balance while the overall probability becomes lower, and users ought

to adjust for this expectation. Our blind tests conducted on two sets of four-hour continuous data

illustrate that the ensemble semblance method outperforms the ensemble maximummethod, which

often misidentifies noise as signals.

Additionally, the ensemble learner, framed as a regression problem, has the ability to estimate any

given input data without a need for a threshold. Despite its proficiency in identifying low probabil-

ity or inconsistent phase predictions, it currently lacks the capability to independently exclude non-

phase signals or detect multiple-phase signals. An additional limitation of our framework is that

it requires a fixed input data of six based models and a specific window length. The simple model

architecture can be adapted efficiently to other base models and seismic window lengths.

This study demonstrated the vast range of model behaviors with respect to the diversity of train-

ing data and the usefulness of combining predictions for a much-improved performance. We also
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demonstrated that ensemble learning might be as powerful as transfer learning, except that it does

not necessarily requires labeled data to make accurate and reliable predictions, which we assess based

on previously published analysis. Our study thus emphasizes the importance of training datasets,

rather than model complexity, in generalizing supervised learning algorithms.
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8
Conclusion and outlook

At this stage, I would finalize this thesis with an emphasis on the main outcome, contribution, and

potential impact of the works that I have completed and have been working on. My studies target

and contribute to two fundamental scientific questions: How does fluid and/or deformation

influence the seismoacoustic properties of porous media? How does fluid modulate deforma-

tion, fracturing, and seismoacoustic behaviors?

In Chapter 2, I develop two wavelet-based approaches, namely wavelet transform stretching
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(WTS) and wavelet transform dynamic time wrapping (WTDTW), and compare and complement

them to existing time-domain, frequency-domain, and wavelet-domain approaches for measuring

velocity changes. I also explore the depth-sensitivity of velocity changes with wavelet-domain ap-

proaches. I conclude that the velocity-change spectrum varies with the depth of velocity change.

This indicates that the spectrum can be utilized to constrain and infer the depth of velocity change

in the field observation. Beyond that, I also conduct factor analysis of the depth sensitivity of ve-

locity change. I find that the characteristic frequency is most sensitive to the background velocity

model and time-lapse of measured coda waves, while the characteristic velocity change is most sensi-

tive to the perturbation depth and thickness ? . Further, I have applied this method to one field case

of monitoring wastewater injection, where I utilizedWTS for measuring velocity-change spectra

and constraining the depth of velocity change with the depth sensitivity analysis ? .

Currently, 2D coda-wave sensitivity kernels for homogeneous media can be accurately calcu-

lated for different frequency bands and time lapses. The depth of the imaging is usually calculated

through the depth-sensitivity kernels of surface waves. Our method of recovering continuously

frequency-dependent changes could help the diagnosis of velocity-change depth as stated previ-

ously. Additionally, the velocity changes in depth can be better constrained with the accurate cal-

culation of 3D coda-wave sensitivity kernels. Other alternatives would use ballistic waves instead of

scattered waves for 4D velocity-change imaging. Current advances in dense seismic array and DAS

acquisition are opening up new opportunities for time-lapse imaging techniques.

In Chapter 3, I develop an experiment apparatus by leveraging 3D-printed granular media and

active-controlled acoustic monitoring technique to investigate frequency-dependent phase shifts

(i.e., velocity changes) and amplitude change (i.e., attenuation change) with respect to saturation

and/or deformation. During the water table increases in the dry media, I find a gradual change in

both velocity and attenuation spectra. I also find that both velocity and attenuation spectra have

different responses to consolidated and unconsolidated media. With the fluid saturation, however,
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different responses disappear as the water dominates the velocity and attenuation changes. One

limitation of our experiments is that the overpressure is unconsidered. As the overpressure-induced

deformation and saturation may also be important mechanisms behind observed velocity changes,

I will complement this mechanism investigation into this ongoing study. Additionally, my new

platform could help us to investigate the strain- or stress-sensitive velocity and attenuation spectral

changes. This would provide insights response of Earth’s materials under different conditions to the

stress perturbation.

In Chapter 4, I explore the possibility of probing deep volcano’s magmatic activity by leverag-

ing inter-source interferometry and repeating earthquakes. Our example demonstration shows the

wavefield between two repeaters can be effectively constructed. I also perform the coda wave inter-

ferometry on the cross-correlations between two sources over time. The velocity changes show some

interesting patterns, that ought to further be improved and compiled for other pairs of sources. Fur-

ther efforts are needed for: 1. performing inter-source interferometry and coda wave interferometry

for all possible source pairs; 2. inverting the measure discrete velocity changes for continuous ve-

locity changes; 3. discovering hidden clues in the calculated velocity changes for possible magmatic

activity.

In Chapter 5, I perform hydrofracturing experiments, where detailed fluid flow, fracture, and ra-

diated acoustic emissions (AEs) can be clearly visualized and listened to. I conduct a holistic analysis

of fractures and AE energy for a high-viscosity case and a low-viscosity case. Both fracturing cases

demonstrate similar stick-break instabilities. I find that radial crack propagation is slow ( 3 m/s)

and facilitated by tangential fractures, which is much faster ( 1000 m/s). Fluid viscosity and pres-

sure The fracture dynamics of slow and fast events are controlled by fluid viscosity and pressure for

the inter-event time and the energy released during individual fast events. Additionally, I find that

these AE signals share behaviors with observations of episodic tremors in Cascadia, United States in

terms of bursty or intermittent slow propagation and nearly linear scaling of radiated energy with
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area. The laboratory experiments provide a plausible model of tectonic tremor as an indicative of

hydraulic fracturing facilitating shear slip during slow earthquakes.

In Chapter 6, I develop a new experiment apparatus by injecting high-pressure water into an

artificial fault-valve model. I visualize the complete compaction and dilatancy dynamics prior to

a failure of the barrier. I find a fluid surge caused by the compaction followed by the bi-direction

migration during the dilatancy. The forward pressure wave breaks the barrier while the backward

pressure decreases the injection pressure as measured. The recorded injection pressure variation

reveals the hydromechanical behaviors. In particular, both dilatancy and barrier failure can cause

pressure drop but with different temporal decays. Additionally, I use cumulative acoustic energy to

indicate mass deformation. The increase rate could be used to suggest the barrier failure. Inferring

physical processes from acoustic energy evolution is difficult. In the field, this challenge can be over-

come by the detailed analysis of earthquake source property. Further, I plan to use hydromechanical

modeling to reproduce the laboratory’s physical processes and scale them up to realistic contexts.

In Chapter 7, I develop an ensemble-learning framework, namely ELEP, for earthquake detec-

tion and phase picking. I find it has great generalizability by ensemble estimations over probability

predictions frommultiple deep-learning pickers. Without transfer learning or further refining, I

demonstrate the effectiveness of ELEP in the on-land and obs datasets, triggered events, and con-

tinuous waveforms. My software package can be readily utilized for any seismic recordings and is

being tested for full operation at a seismic network. The recent tests on the DAS recordings further

show the robustness and effectiveness of the proposed ELEP. I also utilize it to scan the 2007-2022

continuous data recorded by multiple permanent stations deployed at Mount St. Helens and obtain

over three times more than the PNSN catalog, which may warrant further analysis to associate the

new picks and identify actual events. The result is shown in Chapter 4. Moreover, the current ELEP

includes the module for determining first motions, which would help to solve for focal mechanisms

of small earthquakes. In the near future, I aim to build up a machine-learning-powered automated
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toolkit for high-performance seismic monitoring and earthquake early warning.

In summary, this thesis contributes significantly to the understanding of fluid interactions within

the Earth’s subsurface and their impact on seismic behaviors. It reveals how fluids and deformations

alter seismic properties in porous media, affecting fracturing and seismoacoustic activities. The re-

search develops new wavelet-based methodologies for analyzing velocity changes and their depth

sensitivities, providing insights into subsurface fluid movements and their implications on seismic

imaging. Experiments with 3D-printed media and high-pressure fluid injections shed light on the

hydrofracturing dynamics and the intricate relationship between fluid viscosity, pressure, and frac-

ture behaviors, drawing parallels with natural tectonic tremors. Additionally, the study delves into

the hydromechanical behaviors of artificial fault-valve systems, illustrating the complex interactions

between fluid pressure, compaction, and dilatancy dynamics. On the technological front, the the-

sis advances seismic processing through the development of an ensemble-learning framework for

improved earthquake detection and phase picking, showcasing its application in enhancing seismic

network operations. Collectively, these findings offer a comprehensive model of fluid-induced seis-

mic phenomena, bridging laboratory observations with field-scale seismic activities, and paving the

way for refined seismic hazard assessments and resource management strategies.
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A
A.1 Demonstration that the real part of the CWT is a narrow bandpassed

version of the original time series

The time series reconstruction from the wavelet domain is derived by ? with the following equation:

Xn =
δjδt1/2

Cδψ0(0)

j2∑
j=j1

R{Wn(sj)}

s1/2j

, (A1)

whereR denotes the real part. The factor ψ0(0) removes the energy scaling. The factor Cδ is de-

rived by reconstructing a δ function from its wavelet transform. It is a constant for each wavelet
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function and is derived in ? . The X is the reconstructed time series over a band from jth1 to jth2 scale or

frequency. The reconstruction is performed at a specific scale or frequency when j1 equals to j2. In

this case, the above equation is reduced to

Xn = αR{Wn(sj)},

α =
δjδt1/2

Cδψ0(0)s
1/2
j

. (A2)

Based on the reconstruction equation, we can transform the wavelet function of particular fre-

quency or frequency bands back to the corresponding time series in the time domain. The wavelet

transform and its reconstruction of specific frequency or frequency bands are equivalent to the fre-

quency filter in signal processing. One natural way of obtaining dv/v of each frequency is to apply

TS or DTW on the time series filtered at each frequency with the wavelet-domain. However, recon-

struction of the time series at each frequency would be computationally costly. Based on the above

equations, we find that the real part of the wavelet transformR{Wn} is used for the reconstruction,

and the coefficient α is an independent constant, which allows us to directly useR{Wn}without

considering the scaling constant α, since the scaling is usually ignored in extracting phase variations

of two time series. In this way, we are permitted to employ TS or DTW on theR{Wn}without ad-

ditional time cost for reconstruction. To measure dv/v results in specific frequency bands (as against

single frequencies), one can alternatively apply the WTS andWTDTW on the filtered signals in

frequency bands of interest.
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A.2 Parameters for the structural model, the numerical simulations, the

dv/v calculations using all approaches, and performance summary.

Table A.1 gathers information about the numerical exercise. Table A.2 gathers the explicit parame-

ters necessary to apply the algorithms for computing dv/v either in time-, frequency-, and wavelet-

domains. The parameters can be found for either different source-receiver geometry (i.e. zero or

distance offset) or different media (i.e. half-space and layered medium). We summarize the perfor-

mances of all three categories of methods in terms of their general practicability, accuracy, computa-

tional efficiency, stability, and noise resistance in Table A.3.
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Table A.1: Simulaঞon configuraঞon.

Table A.2: Measurement configuraঞon.

Table A.3: Performance summary over all approaches
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A.3 Supplementary figures - additional figures for Chapter 2
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Figure A.1: Workflow diagram of WTS and WTDTW methods. CWT refers to the conঞnuous wavelet transform and
R refers to its real part. The steps are: 1. Apply the CWT to both reference X(t) and current Y(t) ঞme series; 2. at
each frequency fj, extract the real part of the CWT,RX(t) andRY(t); 3. implement TS or DTW onRX(t) andRY(t) to
extract dv/v(fj); 3. repeat step 2 at all frequencies.

152



Figure A.2: Absolute measurement uncertainঞes of the velocity perturbaঞon results shown in Fig.2.2 for (a) ঞme-
domain methods, (b) frequency- and wavelet-domain methods with narrow-frequency bands, and (c) wavelet-domain
methods at all frequencies.
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Figure A.3: Waveforms simulated in a layer-over-halfspace heterogeneous medium using SPECFEM2D solver under
the zero-offset seমng as in Fig.2.5. (a) Reference waveform (blue) and perturbed waveform (red) of the whole space
(top), the shallow layer (middle) and the deep layer (bo�om). The correlaঞon coefficients between the perturbed and
reference are 0.9901, 0.9971, and 0.9971, respecঞvely. (b) Fourier amplitude spectra of (a) bo�om panel.
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Figure A.4: dv/v esঞmates for ঞme-domain (a) and frequency-band (b) methods, in support of Fig.2.5 of the main text,
zero-offset geometry, heterogeneous layer-over-halfspace medium, and uniform perturbaঞon of the medium.
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Figure A.5: dv/v esঞmates for ঞme-domain (a) and frequency-band (b) methods, in support of Fig.2.5 of the main
text, zero-offset geometry, heterogeneous layer-over-halfspace medium, and a perturbaঞon in the shallow layer of
the medium.
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Figure A.6: dv/v esঞmates for ঞme-domain (a) and frequency-band (b) methods, in support of Fig.2.5 of the main text,
zero-offset geometry, heterogeneous layer-over-halfspace medium, and a perturbaঞon in the deep layer of the medium.
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Figure A.7: Waveforms from the layer-over-halfspace heterogeneous medium with distant-offset source-receiver ge-
ometry to support Fig.2.6 of the main manuscript. (a) Reference waveform (blue) and perturbed waveform (red) of the
whole space (top), the shallow layer (middle) and the deep layer (bo�om). The correlaঞon coefficients for three pairs of
waveforms are 0.9635, 0.9692, and 0.9996, respecঞvely. (b) Fourier amplitude spectra of (a) bo�om panel.
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Figure A.8: dv/v esঞmates for ঞme-domain (a) and frequency-band (b) methods, in support of Fig.2.6 of the main text,
distant-offset geometry, heterogeneous layer-over-halfspace medium, and uniform perturbaঞon of the medium.
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Figure A.9: dv/v esঞmates for ঞme-domain (a) and frequency-band (b) methods, in support of Fig.2.6 of the main text,
distant-offset geometry, heterogeneous layer-over-halfspace medium, and perturbaঞon in the shallow layer of the
medium.
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Figure A.10: dv/v esঞmates for ঞme-domain (a) and frequency-band (b) methods, in support of Fig.2.6 of the main text,
distant-offset geometry, heterogeneous layer-over-halfspace medium, and perturbaঞon in the deep layer of the medium.
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Figure A.11: dv/v measured for each depth of the perturbaঞon layer in the zero-offset source-receiver geometry for all
methods. (a) Time-domain WCC, TS, DTW, at various frequency bands (b) MWCS, (c) WCS, (d) WTS, (e) WTDTW, and
over the spectrum of frequencies for (f) WCS, (g) WTS, and (h) WTDTW. Results are repeated in Fig.2.7(a, c) of the main
manuscript.
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Figure A.12: dv/v measured for each depth of the perturbaঞon layer in the distant-offset source-receiver geometry for
all methods. (a) Time-domain WCC, TS, DTW, at various frequency bands (b) MWCS, (c) WCS, (d) WTS, (e) WTDTW, and
over the spectrum of frequencies for (f) WCS, (g) WTS, and (h) WTDTW. Results are repeated in Fig.2.7(b, d) of the main
manuscript.
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Figure A.13: Comparison between dv/v spectra obtained with WTS and narrow bandpassed TS (Gaussian filter), includ-
ing (a) perturbaঞon in the whole space, (b) perturbaঞon only in the shallow layer, and (c) perturbaঞon only in the deep
layer as the layered half-space distant-offset case, which is shown as Fig.2.5 in Secঞon 3.2. The medium and pertur-
baঞon are detailed in Table B1. Briefly, the layer is perturbed at 10-km depth and by 0.1%. The black dashed line is a
reference perturbaঞon value rather than true perturbaঞons at individual frequencies.
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Figure A.14: Effect of dissimilar dominant frequency between the reference and current state on the esঞmates of dv/v.
We perform simulaঞons in the same medium as in Secঞon 3.1 (sca�ering halfspace – uniform change in velocity –
zero-offset response). The dominant frequency of the reference simulaঞon is 1 Hz. The figure organizaঞon is similar to
Fig.A.12. The black dashed line is the true velocity perturbaঞon. We perform 31 simulaঞons in the perturbed medium
with various source spectra by changing the dominant frequency of current source spectra from 0.5 Hz to 2.0 Hz with
an interval of 0.05 Hz.
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Figure A.15: Same as Fig.A.14 but varying the lapse ঞme (start ঞme of the window) of the coda waveform between 5 s
and 45 s.
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Figure A.16: Same as Fig.A.14 but varying the window length of the selected coda window between 15 s and 55 s.
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Figure A.17: Same as Fig.A.14 but varying the noise level. Gaussian noise is added on top of the simulated wavefields
with levels varying between 0% and 30% of the maximum amplitude of the coda waveform.
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Figure A.18: Depth sensiঞviঞes of sca�ered body and surface waves at three lapse ঞmes (i.e. 55 s, 115 s, and 185 s)
for the distant-offset seমng. Le[ three panels (a, c, e) are the dv/v results from TS; right three panels (b, d, f) are the
dv/v results from WTS. The experiment is the same to the distant-offset case of Secঞon 4 but at different ঞme lags.
Note that the spurious results at frequencies around 0.1 Hz are a�ributed to low energy levels (spectral trough) at this
frequency.
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Figure A.19: Depth sensiঞviঞes of sca�ered body (bulk) waves at three lapse ঞmes (i.e. 55 s, 115 s, and 185 s) for the
distant-offset seমng. Le[ three panels (a, c, e) are the dv/v results from TS; right three panels (b, d, f) are the dv/v
results from WTS. The experiment is the same as Fig.A.18 but replacing the free surface with an absorbing boundary in
order to only simulate sca�ered body waves.
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B.1 Supplementary figures - additional figures for Chapter 3
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Figure B.1: Experimental apparatus and specimen.

Figure B.2: (a) Calibraঞon of wavespeeds of P- and S-waves in the hard resin. (b) Dispersion analysis of surface waves
(outlined by purple lines in (a)).
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Figure B.3: Acousঞc emission waveforms collected in the so[ resin. (a) An acঞve measurement with a fixed distance of
30 mm, (b) a shot gather over different distances.

Figure B.4: (a) Spectra of AE waveform for the first case with only water-level changes within a staঞc granular medium.
(b) smoothed spectra of the same waveforms.

174



Figure B.5: (a) Spectra of AE waveform for the cases with stress loading on the well-bonded specimen under various
saturaঞon states: un-, parঞally-, and fully-saturaঞon. (b) smoothed version of same waveforms.
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Figure B.6: (a) Spectra of AE waveform for the cases with stress loading on the unbonded specimen under various
saturaঞon states: un-, parঞally-, and fully-saturaঞon. (b) smoothed version of same waveforms.

176



Figure B.7: Apparent shear-wave velocity (Vs) and its change for individual water heights, which correspond to the lab
measurements as observed in Fig.3.1. Apparent Vs change is directly calculated from the perturbaঞon of apparent Vs
compared to the dry case. To determine the average Vs change for the whole space, we adjust the apparent Vs change
by a spaঞal averaging factor, which are obtained from the volume and velocity of so[ and rigid components, as Eq.3.4.
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C
C.1 Supplementary figures - additional figures for Chapter 4
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Figure C.1: Histograms in amount of earthquake detecঞons by (a) borehole staঞons and (b) surface staঞons.

Figure C.2: (a-c) Comparison between NonLinLoc earthquake locaঞons (yellow squares) in 3D models and PNSN cat-
alogued earthquake locaঞons (gray squares) in 1D. (d) Histograms of P-phase arrival-ঞme residuals between machine
learning picks and manual picks. (e) Histograms of NonLinLoc travelঞme misfits of earthquake locaঞons. (f) Histograms
of earthquake locaঞon difference between NonLinLoc and PNSN.
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Figure C.3: (a-c) NonLinLoc locaঞons of around 25,000 earthquakes detected by ELEP between 2007-2022. (d-f) PNSN
catalogued locaঞons of around 17,500 earthquakes since 1980, among them approximately 10,000 earthquakes were
detected between 2004-2007 and around 7,500 earthquakes occurred between 2007-2022. Note: NonLinLoc locaঞons
are performed in 3D velocity models, the PNSN locaঞons are obtained by using HypoInverse in 1D velocity models.
ELEP detecঞons are three ঞmes more than PNSN catalog.
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D
D.1 Relationship between Radiated Energy and Fracture Area

Because natural systems tend to fail more in shear mode, we compare the energy budget between

mode I and mode II fractures. The potential energy (E) associated with the crack formation is

consumed as fracture or surface energy (Ef) and radiated elastic energy (Er) (heat energy loss is ig-

nored) ? . Thus, the E is approximately a summation of Ef and Er as:

E ≈ Ef + Er, (D.1)
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We consider how this depends on the fracture speed (v) due to crack dynamics ? , writing this

equation in terms of the strain energy density rates,G(v), and fracture area A(v), in which:

E ≈ G(v)A(v) ≈ [Γ(v) + χ(v)]A(v), (D.2)

Γ(v) and χ(v) are respectively the fracture energy and radiated energy release rate, both of them

replies on the fracture speed. G is related to the stress intensity factorK and the young’s modulus γ.

Hence, the potential energy E may be written further asK2/γ, which is a universal representative for

both crack mode-Ι and mode-ΙΙ. In our experiments, the fracture area varies nearly linearly with the

rupture duration, which has small fluctuations that may be associated with the speed of fracturing

propagation. The Γ(v) and χ(v) are minimally influenced by varying moments and almost keep

constant. Similar explanation can be derived with a Brownian walk model for seismic moment of

slow earthquakes ? ? . Accordingly, the radiated energy release scales with the fracture area, which

explains our observations.

D.1.1 Alternative StochasticModel

The near-linear variation of the radiated energy with the area was also found under the assumption

of a randomly varying moment rate function of tremor ? . For weak dependence between tremor slip

and tremor length, a near-linear relation was also modeled ? .

D.1.2 Scaling Relationwith SeismicMoment

? and others showed that for elongated rupture, or rupture with high aspect ratios, the scaling of

ErM0 could be explained by the scaling Er slip ∗ W ∗ L, whereW is now fixed, and slip and area

(WL) allowed to vary. Assuming that Er Area (3/2) isM0 a3, where slip WL = a and area

LW a2. So for skinny rupture, Er a2, where W is constant. We find that the observations of the

182



Cascadia tremor catalog and area suggests a scaling of Er Area(1.16 + −0.3), which is slightly lower

than that of regular earthquakes, but similar to skinny rupture. The laboratory experiments suggest

a nearly linear scaling, and there again, each individual AE is a skinny rupture.

An alternative consideration is that of the definition of moment for tensile cracks. In particular,

we consider the work from ? that writes equations to relate seismic moment and tensile crack di-

mension (a) and fluid pressure (P), such asM0 Pa3. This is similar to the shear momentM0 Δσa3,

where Δσ is shear stress change. It is possible that a slight deviation from the regular scaling (3/2)

can be accommodated by a scaling between fluid pressure change (P) and tremor radiated energy.

Non-self similar behavior is not uncommon in recent observations of shear regular earthquakes

(e.g., ? and many others).

D.2 AE Energy Calibration

We validate accurate measurement of the radiated energy from the AE sensors data by comparing

the radiated and the elastic strain energies frommultiple drop ball tests (see Fig.D.11). The valida-

tion follows a four-step process as follows:

First, the potential energy, Ep, must equal the incoming kinetic energy, Eki. This is confirmed by

the consistency between the theoretical velocity from potential energy and observed incoming veloc-

ity from a high-speed camera (Fig.D.11), as the black line in Fig. D.11a. Both air resistance and ro-

tational energy are negligible. Second, the coefficient of restitution,Re, (ratio between the outgoing

velocity of the bouncing ball, v0, and the incoming velocity of the falling ball, vi) is the parameter

that describes the potential to kinetic energy loss at each bounce. If it is a perfectly elastic collision or

bounce, thenRe = 1, which is almost impossible. In our case,Re is not linearly decreasing with the

height, as shown by the red line in Fig.D.12a.

Third, we define the energy transferred to the material as the kinetic energy transfer, ΔEki, or the
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difference between the ball’s incoming and outgoing kinetic energies, Eki and Ek0. By ignoring air

resistance, rotational energy, plastic energy, and heat, the sample consumes the energy as the elas-

tic strain energy, which produces radiated energy and is later received by the sensor. The relation,

Δkki = Eki(1 − R2
e ) = Ep(1 − R2

e ), can be seen in Fig.D.12b, and will be utilized to convert the

potential energy and into kinetic energy transfer, ΔEki, by multiplying it by (1− R2
e ).

Fourth, we use this relation to calibrate another group of drop ball tests, which record the AE

signals. We first compare the AE energy calculated from the integration of squared voltages over

time to the potential energy in Fig. D.12c. We then calculate the kinetic energy transfer ΔEki from

the potential energy, Ep, by using the previously calibrated relation in Fig.D.12d. We see AE radiated

energy is almost proportional to ΔEki.

We conclude that the AE energy is a good metric for ΔEki, which is mainly elastic strain energy.

We also compare the AE energy calculated from the integration of squared velocities over time to

further confirm the radiated energy ends up with the kinetic energy of particle motions in the sam-

ple or sample surface. The elastic strain energy is released and propagates as the radiated energy.

184



Movie S1. Animated demonstration of observations on the high-viscosity (800cP) fluid-induced

fracturing experiment. Raw observations include the optical images (upper-left panel) captured by a

high-speed (fps = 100, 000) camera and acoustic-emission (AE) signals (lower-right panel) recorded

by four AE sensors. Other measurements are also derived, such as the time-evolving fracture fronts

(upper-right panel) in four directions (SE, NE, NW, and SW), which are extracted from individual

frames; the image difference (background of the lower-left panel) relative to the first frame and thus

clear expanding of fracture and fluid; the derivative image (overlaid red image in the lower-left panel)

which indicates the opening cracks; the intensity of each differential image is averaged in space and

normalized in time and displayed as the red line at the bottom of the lower-right panel (Note: the

intensity of the differential image also means the intensity rate of raw images). The overall view

of all observations clearly demonstrates the fracture generation process and produced mechanical

vibrations. [Link to video]

Movie S2. Same toMovie S1 but for the low-viscosity (1cP) fluid-induced fracturing experiment.

[Link to video]

185

https://drive.google.com/file/d/1vr9rhLFWpas1HgIyy1EzmHkTuIoM5RPO/view
https://drive.google.com/file/d/10FHtwsOBSn-2d39wFejzrWumadC3VDPp/view


D.3 Supplementary figures - additional figures for Chapter 5

186



Figure D.1: Experimental apparatus. A high-pressure pump drives the fracturing fluid into the sample. A pressure trans-
ducer measures the fluid pressure as the experiment proceeds. AE sensors are placed on each of four sample quadrants
and record the AE signal generated by the fractures. A high-speed camera is filming the growing fracture from the bot-
tom of the sample, when triggered by the first AE signal. The details of the experimental apparatus components are
shown in the photos in Fig.D.2.
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Figure D.2: Main components of the experimental apparatus. a) A high-speed camera (Phantom TMX5010) films the
fracture propagaঞon. A blue LED ring is placed around the sample to highlight the contrast between dyed fluids and
fracture fronts. b) Four AE Glaser-type sensors (KRNBB-PC) listen to the fracture propagaঞon. c) A high-pressure pump
(Teledyne Isco 65D) injects the fluid at a constant flow rate of Q=0.3 ml/min.
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Figure D.3: Pressure and injected volume during the experiment. The fluid injected volume (blue curves) increases the
fluid pressure (red curves) unঞl the sample ruptures (shaded blue region). Both fluid viscosity experiments are shown:
1cP in dashed lines and 800 cP in solid lines.
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Figure D.4: Kymograph and AE signals. (a-top) kymograph of the fracture propagaঞon during the enঞre experiment in
the high-viscosity case. The sঞck-break events are clearly visible by the increase and stagnaঞon in the fracture radius.
(a-bo�om) Overall, AE signals are recorded during the enঞre experiment, occurring as bursts and related to breaking
events in the kymograph and the pauses related to the sঞck events. (b) similar to (a) but for the low-viscosity experi-
ment. In this case, the sঞck-break events are not clearly resolvable in the kymograph. Sঞll, the AE signal shows inter-
esঞng bursts in their signals, indicaঞng very small amplitude sঞck-break instability events. Note: parঞal data have been
shown in Fig. 5.2.
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Figure D.5: Comparison between AE raw signals and intensity rates, which include raw (black), filtered (blue), and en-
veloped (red) ones for (a) high-viscosity and (b) low-viscosity experiments. Note: AE signals are exactly the same as the
ones in Fig. D.4. Parঞal data have been shown in Fig. 5.2. We refer to the intensity measurements in the video descrip-
ঞon.
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Figure D.6: Spectrograms of AE signals. We obtain them by performing the short-ঞme Fourier transform on individual
raw AE signals of the water experiment as the ones in Fig.D.4b. Note: the signals’ unit is voltage and is nearly propor-
ঞonal to displacement for an almost flat instrumental response funcঞon and a constant signal amplificaঞon factor.

Figure D.7: Glass capillary test for Green’s funcঞon calibraঞon. (a) Calibraঞon setup in which a glass capillary breaks
at the impact point and generates an impact. Four AE sensors (A, B, C, and D) are deployed in a line at intervals of 15
mm from each other, recording the same single event resulঞng from the capillary break. The block used is made of the
same 3D printed PMMA material as for the fracturing experiment and is dimensioned (140x140x50 mm) to avoid ar-
rivals of any P-wave signal reflected from the boundary before the first arrival from the capillary break. (b) AE signals
are recorded at the four sensors (successively from the impact point A, B, C, D) resulঞng from the capillary break. With
wave types labeled, The signals are labeled with the arrivals of different waves, the measured P-wave speed is approxi-
mately 2300 m/s and esঞmated S- or Rayleigh wave speeds are both about 1000 m/s, because the Poisson’s raঞo of the
material is esঞmated to 0.34 and as the distance between the source and successive receivers is very small compared to
the overall wave speed.
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Figure D.8: Fracture event spaঞal locaঞon by AE triangulaঞon. (a) Arrival ঞmes are visually picked and annotated with
downward arrows on the AE signals. Nucleaঞon begins at Tn, seen as the red dashed line. The arrival ঞme difference is
compared to the nucleaঞon ঞmes, allowing us to triangulate and determine the spaঞal locaঞon of the nucleaঞon event
(b) Differenঞal image, the locaঞons of the sensors (thick colored arrows), fracture front (red dash line), fluid front (solid
blue line), and the observed locaঞon of the fracture nucleaঞon (red oval). (c) Misfit between theoreঞcal and observed
differenঞal travel ঞmes between sensors given the radial and azimuthal distances in a polar coordinate. The warm
and cold colors denote the small and large misfits, respecঞvely. The red oval locaঞon represents the locaঞon with the
minimum misfit. The locaঞon is almost consistent with the nucleaঞon locaঞon observed in (b). The velocity calibrated
in Fig. D.7 is used for creaঞng a travel ঞmetable for the locaঞon search. The misfit funcঞon used for the grid search
method can be seen as Eq.5.2.2 in the main text. (d) Four snapshots of differenঞal images exhibit the propagaঞon and
arrest stages during a single tangenঞal fracture. The third image is observed as the secondary strong fracturing stage,
which radiates strong signals seen as the secondary waveforms outlined by the dashed box in (a). A[er esঞmaঞng the
travel ঞme (�=56.6us) a[er Tn+70us, we postulate that the dominant Rayleigh-wave signal recorded by the SW sensor
is associated with the third image. In contrast, the clear arrivals at the NW sensor are unrecognized due to the short
distance. This indicates the enঞre fracturing process has not uniformly occurred, which probably results in variaঞons in
the fluid pressure.
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Figure D.9: Low fluid-viscosity (water) experiment images and AE signals. (a) Three images a[er at T=2.4 ms, at T+50 μs,
and at T+80 μs. In the low fluid viscosity case, mulঞple nucleaঞon events nucleate nearly simultaneously (tracked by the
colored points from differenঞal images) and show interesঞng propagaঞng behaviors (shown by the arrows of mulঞple
colors corresponding to their sources). (b) The four raw AE signals don’t seem to give a straigh�orward indicaঞon of the
nature of the fracture behavior. Indeed, as many events occur very close in ঞme, their signals overlap. The change in the
fracture area behind the fracture front (white or gray pixels) can be easily calculated over ঞme.

Figure D.10: AE energy and rupture area. (a) The scaling of AE energy rate and fast transverse fracture area (small red
areas in Fig.5.1b) using raw AE signals. The radiated energy is uncorrected for geometric spreading and a�enuaঞon (see
Equaঞon 2 in the main text). (b) Sensiঞvity analysis of a�enuaঞon factors with respect to linear regression coefficients.
For both high- and low-viscosity experiments, the a�enuaঞon coefficient is close to 20 and has negligible effects on the
scaling relaঞon. Therefore, the scaling relaঞon is strongly influenced by the effect of geometric spreading.
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Figure D.11: Drop Ball tests: AE combined with high-speed imaging. (a) Experimental setup of the drop ball test (inner
upper picture) and zoom-in image of falling steel ball (r=2mm) captured by the high-speed camera. We place four AE
sensors in a line to record the AE signals from the ball impacts similar to the capillary break tests (Fig.D.7). The ball falls
and hits the sample at an incoming velocity and bounces back up with an outcoming velocity. (b) Incoming and outgoing
velociঞes can be measured using high-speed imaging using a Kymograph (distance, ঞme representaঞon). The red and
yellow lines represent the incoming and outcoming trajectories, and their slope equals the velociঞes (c). We perform
experiments at different heights to observe the fluctuaঞon of the incoming and outcoming velociঞes. The observaঞons
are shown and analyzed for the energy calibraঞon in Fig. D.10.
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Figure D.12: AE Energy calibraঞon using the drop-ball test. (a) The theoreঞcal velociঞes from potenঞal energy are
almost equal to the observed incoming velocity from a high-speed camera (Fig. D.11) as shown by the black line. The
coefficient of resঞtuঞon, Re, is not linearly decreasing with the height, as shown by the red line. (b) Relaঞon between
the potenঞal energy and kineঞc energy transfer during ball collision. (c) Relaঞon between the potenঞal energy and AE
energy calculated from the integraঞon of squared voltages over ঞme. (d) Relaঞon between the kineঞc energy transfer
and AE energy. The detailed explanaঞon and process can be found in the supplementary Text 2.
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Figure D.13: Relaঞons between fluid pressure, fracture-front propagaঞon, and AE signals. (a, c) Interacঞons between
absolute fluid pressure (originally measured at the injecঞon site with a sampling rate of 3.125 MHz) and radial fracture
fronts in four direcঞons (SE, NE, NW, and SW). (b, d) Relaঞon between the filtered fluid pressure (2 20 kHz) and the
four AE signals. Note that the upper two panels are obtained from another high-viscosity (800 cP) fluid-injecঞon ex-
periment, and the lower two panels are from another low-viscosity (1 cP) fluid injecঞon experiment. Both experiments
are similar to the experiments used in the main text. However, the fluid pressure is, unfortunately, not measured by a
high-resoluঞon (i.e., high sampling rate) pressure transducer.
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Figure D.14: Spaঞo-temporal Tectonic Tremors. (a) Contours of tremor source area in each of the first 10 days of the
2007 tremor swarm occurred in the Northern Cascadia. Each area is obtained by contouring the epicenters of the daily
occurring tremors. (b) The cumulaঞve radiated energy is proporঞonal to the cumulaঞve tremor area for each of the four
Northern Cascadia tremor swarms. Each square denotes the daily accumulated tremor area and accumulated radiated
seismic energy ? .
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Figure D.15: Analysis of the regression coefficients between logarithmic (base 10) cumulaঞve radiated energy of tremors
and area in Fig.5.6. (a) The spaঞal distribuঞon of these regression coefficients for 500 tremor swarms in the Cascadia
region from 2017 to 2023. Each coefficient is obtained through the linear regression analysis between the logarithmic
(base 10) cumulaঞve tremor energy and area for each tremor swarm. The resulঞng coefficient is then employed to
uniformly color-code all tremors within the specific tremor swarm. These tremor swarms exhibit varying logarithmic
powers associated with tremor areas. We also display them in histograms for staঞsঞcal analysis, as shown in b. The
mean, median, and standard deviaঞon of these logarithmic powers, or regression coefficients, are 1.16, 1.15, and 0.32,
respecঞvely. It is evident that most tremor swarms display a near-linear relaঞonship between tremor radiated energy
and tremor area.
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