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ABSTRACT

Aquifers are vital groundwater reservoirs for residential, agricultural, and industrial activities
worldwide. Tracking their state with high temporal and spatial resolution is critical for water re-
source management at the regional scale yet is rarely achieved from a single dataset. Here, we show
that variations in groundwater levels can be mapped in space and time using perturbations in seis-
mic velocity (dv/v). We employ the computing language Julia and cloud computing resources to
make daily measurements of dv/v across California from the cross-correlation and auto-correlation
of the ambient seismic field. We compare our results to estimates of groundwater from groundwa-
ter wells, precipitation and satellite measurements. duv/v reproduces the groundwater level changes
that are marked by the multi-year depletions and rapid recharges typical of California’s cycles of
droughts and floods. dv/v correlates spatially with vertical surface displacements and deformation
measured with GPS and the GRACE satellite.
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Introduction

I frequently hear music in the very heart of noise.

George Gershwin

Groundwater is the largest reservoir of fresh water globally, supplying one third of the water
used for residential, agricultural, and industrial use*7#. In the last half century, over-withdrawal of

groundwater has led to subsidence and a loss of groundwater storage in numerous aquifers across



the world "*#°°. This is especially problematic for more than two billion people worldwide that live
farther than s & from a source of surface fresh water '*7. Compounding past and present declines
in groundwater is the role of climate change, which will lead to more frequent and pronounced dry
and hot years, along with stronger extreme precipitation events in places like California®> 597,
Here, I propose two seismic proxies, the relative change in seismic velocity, dv/v, and the change
in coda attenuation, A Q:l, obtained from the cross-correlation of ambient seismic noise, to moni-
tor groundwater levels, specifically hydraulic heads. These new proxies allow for groundwater mon-
itoring at a range of spatial and temporal scales, from meters and minutes to hundreds of kilometers
and decades. This thesis builds on fundamental advances in theory, laboratory measurements, seis-
mic observations, and computing power that have allowed ambient seismic monitoring to become
possible in the last two decades'75. To do so, I develop relations between our seismic measurements
and hydraulic heads, using both an established theoretical framework and an empirical approach.
To scale the analysis from the single station to the network scale, I introduce new methods for ap-
plying high-performance and cloud computing to seismic data. This thesis is organized into seven
chapters, including this introduction, where I develop the theoretical foundation to relate seismic

and hydrological observations, and a short conclusion.

I GROUNDWATER MONITORING USING HYDROLOGY AND GEODESY

Groundwater monitoring is difficult due to a lack of knowledge of the subsurface and a sparsity of
groundwater measurements '*#. Conventionally, hydrologists map groundwater recharge, flow into
the saturated zone, across an aquifer using a network of monitoring wells 7 and the groundwa-

L 4 7 where

ter fluctuation method '*°. The method converts changes in hydraulic head » = o

Pis pressure, p, is the density of water, g is the gravitational acceleration at the surface, and z is a

reference datum, to recharge using the specific yield, S, which relates the volume of water released



from storage per unit decline of head Ab'°°. The recharge, R, at each point in an aquifer is then,
R = S,Ab/At, where tis time. The groundwater fluctuation method is only as precise as the sam-
pling frequency of measurements and the spatial density of groundwater wells "°°.

A second more sophisticated approach is the numerical simulation of Darcy’s law* in a poroelas-
tic medium, which requires knowledge of the hydraulic conductivity K, hydraulic gradient Ab/Al,

and the area upstream of the measuring site '*°

, and gives a more accurate model of groundwater
flow. Numerical models are limited by the imprecise knowledge of K**?, which can vary over 14
orders of magnitude over short spatial scales®®.

Groundwater extraction induces surface elevation changes that are sometimes dramatic. In par-
ticular, a majority of areas experiencing rapid subsidence in the United States are correlated with
excessive groundwater extraction ®. When groundwater levels are lowered, pore pressure declines,
and the pore space compacts due to a higher effective stress in the sediment matrix**#. The mani-
festation of this compaction at depth is subsidence at the surface. In recent years, geodetic methods,
such as Global Positoning System (GPS) and Interferometric Synthetic-Aperture Radar (InSAR),
have shown promise to infer groundwater levels by monitoring land subsidence*°. Surface displace-
ments measured by GPS provide high temporal but sparse spatial resolution of groundwater level

changes 18,130,118

, while those measured by InSAR provide high spatial resolution but limited tem-
poral resolution '*>°#7. Similarly, gravity measurements from the GR ACE satellite are sensitive to
water mass changes, but only at large wavelengths, and suffer non-uniqueness between water mass

210,292

and aquifer depths

2 MEASURING THE SEISMIC VELOCITY CHANGE, DV/V

Seismic travel-time measurements provide indirect measurements of subsurface structure and me-

chanical properties, such as density, elastic constants, or fluid saturation. Travel-time tomography



using earthquake body waves (P and S-waves)* or noise correlation functions*** can retrieve lateral
or vertical static variations in subsurface properties, while repeated or continuous travel-time mea-
surements can recover femporal changes in subsurface structure, properties, or Auids®>19%293 This
thesis will consider temporal changes to the subsurface, with particular emphasis on fluids. When
attempting temporal monitoring, we must consider both the seismic source and seismic phase with
which we want to explore the subsurface. Seismic sources can be divided into active, such as earth-
quakes 7%, air guns 198 electric pulses*??, explosions 77 or oscillators®, or passive sources, such

285,104,16

as ocean waves , wind "5 or background anthropogenic activity that generates emergent

waves >°7*

. Travel-time measurements can be made with impulsive, ballistic waves or multiply-
scattered, coda waves. Ballistic waves, usually from earthquakes, have high signal to noise ratio, but
uncertainties in the origin time and relative infrequency of the earthquakes hamper their use for
travel-time measurements. Coda waves take a more circuitous path between the source and receiver
than ballistic waves, scattering off heterogeneities in the Earth *°. Coda waves thus sample a broader
volume than direct, ballistic waves. Scattering reduces the sensitivity of coda waves to the original
seismic source, which increases their sensitivity near the receiver”?.

If Earth material property changes, a travel-time difference accumulates in late coda waves, with
phase shifts d increasing proportionally with phase lags z. Waves in the late coda are thus more sen-
sitive to small perturbations in velocity than ballistic sources. With the assumption that there is a
homogeneous velocity change in the sampling medium, the relative time delay in the coda, dz/z, is
related to the relative change in seismic velocity, dv/v, by dt/r = —dv/v. Recent work has shown
that this relation holds for many realistic scenarios of velocity perturbation #4295,

Poupinet et al. 7> measured seismic velocity variations near the Calaveras Fault, CA by com-
paring the relative delay of coda waves between doublet events, repeating earthquakes with similar

epicenters and mechanisms. The “doublet technique”, also called Moving Window Cross Spectrum

(MWCS), has been used to monitor variations in seismic velocity in fault zones'?*73 and volca-



noes 771, Using earthquakes as seismic sources for continuous monitoring is limited by the need
for repeated earthquakes, which only occur at major fault systems '7?, volcanoes*** and sites of fluid
injection*. Active sources can measure changes in crustal velocity with precision of 1073 —107%
from travel-time measurements *?>*?3*37, These methods have not seen wide adoption due to their
limited observation time (¢ < 1 year) and short source-receiver baseline (L < 1 — 2km).

Ambient seismic waves continuously sample the mechanical properties of the near-surface.
While k7 hinted that information about the subsurface could be determined through the spa-
tial autocorrelation of the ambient field, it was not until laboratory measurements in the field of

acoustics *** and theoretical studies °727%

showed that the cross-correlation of a diffuse field yields
the elastodynamic Green’s function of the solid material. Campillo and Paul > and Shapiro and
Campillo®>* were the first to extract fundamental surface wave arrivals (Green’s functions) from the
cross-correlation of coda waves and ambient noise, respectively, recorded at pairs of seismometers.
In the real Earth, where ocean storms and waves '®*5%1°4, atmospheric disturbances'** and cultural

noise 158,71,200

generate the ambient field, ambient noise cross-correlation recovers a band-limited
approximation to the Green’s function between a pair of seismometers>¢7>>79.

Thanks to ambient noise seismology, seismometers are now considered as continuous “virtual
sources” and receivers, obviating the use of repeated earthquakes, explosive sources or piezoelectric
transducers. Ambient noise cross-correlations capture both direct waves and multiply scattered
waves. Similar to the coda of earthquakes, coda waves from ambient noise cross-correlation are
greatly sensitive to small perturbations in the medium of propagation ***. Pacheco and Snieder '**
suggested that local perturbations in seismic velocity could be monitored through tracking of tem-
poral changes in the coda of ambient noise cross-correlations. Sens-Schonfelder and Wegler**° were
the first to apply “Coda Wave Interferometry” to ambient noise cross-correlations to continuously

monitor the change in seismic velocity, dv/v, at Merapi volcano, Indonesia. They found a seasonal

change in dv/v due to precipitation.



The workflow to extract dv/v from ambient noise is described in Figurer.1. First, the ambi-
ent seismic field is recorded at a pair of seismic stations, 4 and B. Seismic waveforms are then pre-
processed, cross-correlated, and stacked temporally. This process is repeated over a time period that
can spans minutes to years, depending on the application. Then, phase delays, dz/#, are measured
between each individual correlation function and a reference correlation, which allows one to con-
struct a time series of dv/v. This workflow is performed over all combinations of seismometers pairs
and station components (north-north, north-east, north-vertical, etc..). The average dv/v time-series

over all stations and components is often reported for a synoptic view of the velocity changes.
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Figure 1.1: dv/v workflow. (a) Record ambient seismic noise at pair of seismometers. (b) Pre-process and cross-correlate
ambient noise. (c) Phase delay between two (red and black) noise cross-correlation functions. (d) Time delay, dz‘/t,
measurement. (e) dv/v time series near Parkfield, CA from Brenguier et al. *.



dv/v has been widely used in recent years to study the dynamics of Earth’s crust in response to
y ¥ y y p

165,

earthquakes 3335287254 volcanic eruptions #1837 and ice sheet melt'*°. dv/v is known to vary

116

230,160,268,276 , freeze-thaw of permafrost ",

160,268,106

seasonally due to precipitation , air temperature

and decennially due to climatic forcing "+°

. Changes in seismic velocities are thus a signature of the
mechanical response of the Earth material to stresses. I will now show that dv/v is closely related to

volumetric strains.

3 USING NONLINEAR ELASTICITY TO TURN dU/U INTO A STRAINMETER

Lab measurements have shown that uniaxial stress'7® and saturation '7? can change seismic velocity.
In low porosity rocks with high aspect ratio, penny-shaped cracks, such as granites, an increase in
saturation (a decrease in effective stress) increases 7, *7?. In this case, when a fluid fills the cracks, the
effective compressibility of the rock increases more than the density, increasing V. The opposite is
true for sedimentary rocks with rounded pores, where the change in seismic velocity scales linearly
with effective stress®’. One proposed model for the velocity change in fluid-saturated sedimentary
rocks is that increasing pore pressure decreases the area of grain contacts and thus lowers effective
moduli, which in turns decreases seismic velocity >*. This relationship between effective stress and
seismic velocity is especially useful when considering groundwater aquifers, which are composed of
sedimentary strata and highly fractured rock.

Laboratory observations of variations in seismic velocities can be modeled using nonlinear elastic
theory. Hughes and Kelly*'* derived the third-order equations for the velocities of elastic compres-

sion and shear waves under hydrostatic pressure p, given by,



2 _ V4

PV =24 2u— Le(cl 724 10) (1.1a)
2_ P _1

pVi=p 3 (3m 2n+3l+6y) (1.1b)

where /, m, and 7 are Murnaghan’s third-order elastic constants 7", K is the bulk modulus, p
is the density of rock, and 1 and y are the Lamé parameters or second-order elastic constants. The
third-order elastic constants for Earth materials have negative values and are 1-2 orders of magnitude
larger than the second-elastic constants, and do not correlate with physical properties, such as den-
sity, porosity, or strength>*°. Toupin and Bernstein*®5 derived the relative change in compressional

and shear velocity with respect to a change hydrostatic pressure as,

OV,  8n+10m + 72+ 10x

1.2
L op 2+ 2u (1.28)
2
ﬁ({)V: _ 4n +3m + 31 + 6u (1.2b)
op A+ 2u

From equation 1.2, I note that the slope 37%/p is related to a ratio of the third-order elastic
constants to the second-order elastic coefhicients. This ratio is referred to as the acoustoelastic pa-
rameter 181.1. in the literature 8131199226,

For a uniaxial stress, there are five unique acoustoelastic constants, ﬂz’j’ depending on the direc-
tion of wave propagation (parallel or perpendicular to the applied stress) and direction of particle
motion®*. E.g. 4, is the acoustoelastic coefficient for a compressional wave propagating parallel
to the applied stress, 4, is the acoustoelastic coefficient for a shear wave propagating parallel to the

applied stress, etc.. When measuring ﬁl.j. with coda waves, it is difficult to separate the individual

components of ﬂlj, as compressional and shear waves equipartition under multiple scattering 283,



Experimentalists thus often report the ensemble averaged acoustoelastic coefficient, 8 = <éz,ﬁ@ij>,
where Y~ 2;; = 1 and () denotes an ensemble average '3%9%29°

i g .
The one-dimensional stress-strain relationship containing nonlinear effects can be reformatted

with j as,

J:M(£+ﬁ52+...) (1.3)

where o is stress, M is the second- and third-order elastic modulus, given by 2 and 3 independent
components, respectively, for an isotropic material "®7, and ¢ is strain. In this case, 4 can be expressed

in terms of the Murnaghan moduli as,

3 [+2m

/3:5+m (1.4)

Experimental values for £ vary widely based on the materials but is in general a large negative val-
ues. Reported values for steel are around —10°""" concrete in the range of —10! to —102226:138,236,190,301
Barre granite in the range of —10% to —103 72, marble around —103 '*5, and Fountainbleu sand-

stone around —10% 25, Under a nonlinear elastic rheology, the local sound velocity is given by Os-

trovsky and Jobnson "7 as,

v=/p ldo/de = vo(1+Be+ ...), (1.5)

where v and v are the perturbed and unpertured velocities, respectively. The change in velocity

% = % due to a hydrostatic stress, oz, as a function of the volumetric strain, ¢, then becomes,

22 pe. (1.6)

v

Recently, a number of authors have measured f values due to tidal strains using ambient noise



cross-correlation. Mao et al. '5* found a value of § = —2 X 103 — 2 x 10* for tidal strains with
differing tidal periods at Piton de la Fournaise (PdF) volcano, La Réunion. Sens-Schonfelder and
Eulenfeld**° found f = —1.6 x 10# for tidal strains in the Atacama desert. Takano et al. *55 found

B = —6.9 x 10* for tidal strains at the foot of Mount Iwate, Japan.

4 a’v/v TURNED INTO A MEASURE OF HYDRAULIC HEAD

Here, I attempt to determine the effect of an increase in groundwater level on seismic velocity usin

g y using
poroelastic theory and nonlinear elastic theory. The constitutive relations for an ordinary isotropic,
linearly elastic solid are,

4
ZGEZJ = 0'1‘]‘ — m@kkéfj, (17)

where g;jis the strain tensor, 7y is the stress tensor, 51]- is the Kronecker delta, G is the shear modu-
lus, and » is Poisson’s ratio. Poroelastic theory augments the linear elastic constitutive relation by

adding the contribution of pore pressure, p, and the change in fluid mass content per unit volume,

202

m. Following the results of Rice and Cleary*°*, the poroelastic constitutive relations are,

v 3(vy —v)
2Gey = o — — % 1.
0T, T * B(1+»)(1+ Vu)P J (1.82)
3P0 (s — ¥) 3
— = — 1.8b
M= 0GB+ ) (4 ) \ T B (1.8b)

where v, is the “undrained” Poisson’s ratio, B is Skempton’s coefficient, 7 — my is the change
in fluid mass content per unit volume, p,, is the density of the pore fluid and p is the pore fluid
pressure. I now consider the effect of precipitation over a wide area on groundwater levels under
undrained conditions, where there is no fluid flow in response to stress. I argue later in Chapter 4

that considering undrained conditions, where 72 — m( = 0, and neglecting the drained response

10



is reasonable. I follow Roeloffs*'* to derive a relation between hydraulic head Ab, strains, and dv/v.

I start with the definition of the Skempton’s coefficient, which relates a change pore pressure, p, to

isotropic or volumetric stress oy, 238

_ —Boy,
r=— (1.9)

Using equation 1.7, we can recast equation 1.9 in terms of the pore pressure due to volumetric
strain, g, as,
2GB 1+,

i 1.1
)4 3 12, (1.10)

where I note that a change of pore pressure, Ap, for a given change in groundwater level Ab,is

given by

Ap = pogAh (1.11)

where ¢ is the gravitational acceleration at the surface. Substituting equation 1.11 into equation
1.10 shows that a change in groundwater level is linearly related to the change in volumetric strain,

Ekk> S,

2GB 1+ v,

Ah=———¢p.
3pg1— Zvugkk

(1.12)

Equation 1.12 is similar to the one found by Riley>°° for relating the compaction of an aquifer
due to the instantaneous lowering of hydraulic head. The coefficient of proportionality between Ab

and ¢, in the case of compaction is given by the skeletal specific storage*” Sy, where,

~ 3pyg(l —29)

Sy = Ty (1.13)
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Substituting equation 1.6 into equation 1.12 then gives a relation for the change in seismic wave

speed as a function of change in groundwater level,

Av  3pygl— 2,

—_—= = Ab 1.14
v 2GB 1+, £ ( )
and in its reduced form,
A S,
Ao _ _Sub ), (1.15)
v B

s MONITORING ATTENUATION

Thus far, I have addressed the phase-sensitivity of seismic waves to subsurface perturbations. The
amplitudes of seismic waves are also sensitive to the anelastic regime. Seismic wave amplitudes decay
at a faster rate than what is predicted by geometric spreading - a process we call attenuation. Atten-
uation takes two forms: scattering and intrinsic absorption. Scattering is an elastic process in which
small heterogeneities generate incoherent phases 8, Scattering redistributes, rather than removes, en-
ergy. Intrinsic absorption is an anelastic process in which kinetic energy is converted into heat**°.
Attenuation can be measured on the amplitude of distinct seismic wave amplitudes or on the decay
of coda waves, the later of which is called codaQ or Qf_l 710,

CodaQ measurements were popular in the 1980’s and 1990’s, when it was thought that temporal
changes in Q[_1 could be used to predict earthquakes®. Chouet >° made the first measurements of
codaQ in central California, where he found an increase in Q, ! over the period of a year but could
not find a satisfactory theoretical explanation for the changes. Febler et al.®s observed an increase
in codaQ prior to the 1981 eruption of Mount St. Helens, suggesting the role of fluids in codaQ
variations. Overall, it is expected that codaQ may vary by as much as 50% "*">*°.

Ambient noise cross-correlations also carry the signature of codaQ. Sens-Schonfelder and We-

12



gler° and Wegler and Sens-Schonfelder 286 measured reasonable values of codaQ in ambient-
noise cross correlation and single-station correlations, respectively. Hirose et al. **7 calculated the
mean free path length using the envelope decay of ambient noise correlation coda windows. Soergel
et al. *** measured codaQ on inter-station cross correlations at the regional scale and found spatial
variations that were consistent with tectonic structure. Soergel et al. *** needed at least 200 days of
stacking for sufficient stability in the measurements. van Dinther et al. *** observed fivefold varia-

tions in Q! across the North Anatolian Fault using ambient noise correlations.

6 SYNOPSIS

Now that we have the foundations to understand the seismic measurements and their relation to
hydrological conditions, we turn to practical application in the California. In the second chapter,

I present results from monitoring groundwater fluctuations in the San Gabriel Valley, CA due to
drought from 2000 - 2018 5%. In the third chapter, I develop a framework for accelerating ambient
noise cross-correlations using the computing language Julia and high-performance computing re-
sources*?. In the fourth chapter, I develop a framework for using a single seismometer to monitor
groundwater level changes. I compare my results to groundwater well measurements, precipita-
tion measurements, and gravity measurements from the Gravity Recovery and Climate Experiment
(GRACE)*®. In the fifth chapter, I apply the methods developed in the third and fourth chapters
to monitor groundwater levels across the state of California over the last two decades. In the final

chapter, I show the potential of using internet-of-things (IoT’) devices for seismology at the edge.
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Tracking Groundwater Levels Using the

Ambient Seismic Field

Too many sins, ’'m runnin’ out

Somebody send me a well for the drought

Kendrick Lamar Duckworth
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This study ** presents the perturbations in seismic velocity (dv/v) in the San Gabriel Valley (SGV),
Eastern Los Angeles County, California. The SGV contains three unconfined, urban aquifers: the
San Gabriel, the Puente, and the Raymond Basins. The east-northeast-striking Raymond Fault acts
as a barrier to flow between the Raymond and San Gabriel Basins, while the San Gabriel and Puente
Basins are hydraulically connected +*95>'5". Water-bearing sediments reach a maximum thickness of
1,200 2 in the central part of the SGV#'. The SGV Basin is recharged by a combination of infiltra-
tion from rainfall, runoft from the San Gabriel Mountains, stormwater capture, and imported water

from the State Water Project.

34.2°N

34.1°N

34°N

33.9°N

Figure 2.1: Groundwater level change in San Gabriel Valley during most recent drought (Fall 2012 - Fall 2016). Seismic
stations are shown as blue triangles, and groundwater wells are shown as yellow circles. Black circle indicates the
position of the Baldwin Park Key well.

We consider changes in SGV groundwater in the period Jan 2000 - Jul 2017. This period is no-
table for having three major droughts in southern California (2002-2004, 2007-2009, and 2012~

2016)*. During droughts, groundwater supplies over 40% of water demand in the SGV *5". By the
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end of the 2012-2016 drought, groundwater levels dropped 18 72 in the SGV in the Baldwin Park
Key Well (Figure 2.1), reaching all-time low levels in Oct 2016. Even with above average precipita-
tion in the winter of 2016-2017, groundwater levels only recovered 1.7 7 in the SGV basin due to

151

uptake by drought-parched soil

1 DATA AND METHODS

AMBIENT SEIsMIC CROSS-CORRELATION

We use continuous data from broadband vertical component seismometers in the California In-
tegrated Seismic Network (CI) from Jan 2000 - Jul 2017 (Fig 2.1). All raw waveforms are down-
sampled to 20 Hz, demeaned, and detrended. Hourly windows of raw data with maximum am-
plitude greater than ten times the standard deviation of the daily trace are discarded. We apply

one-bit normalization and whiten in the frequency domain from o.05 to 4 Hz*"'#°

. Daily time
series are segmented into 1-hour windows with 30 minutes of overlap between successive windows
and cross-correlated using the MSNoise package '*°. Noise cross-correlation functions (NCFs) are
computed for all station pairs in all available date ranges. Instrument corrections are applied after
cross-correlating. A daily NCF is formed by stacking all hourly NCFs from each day.

Daily changes in seismic velocity are computed using the Moving Window Cross-Spectrum
(MWCS) technique '?3:5°. We compute time shifts, 47, in the coda of daily NCFs relative to a ref-
erence NCF, the stack of all NCFs for each station pair, in the 0.5 - 2 Hz frequency band. We apply
a 30 day running mean to the NCFs to improve the stability of the MWCS analysis. Time shifts dr
and coherency ¢ between the reference and daily NCF are calculated beginning after the o.5 k2 /s
arrival in the coda in 10 s windows, shifted by 20% of the window length. df measurements with

time shift 4z < 0.2 s in each window and coherency ¢ > 0.5 are included. A daily time shift dz/r

is measured by regressing time shifts df from each window in the causal and acausal part of the coda.
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Assuming that there is linear relation between relative time lags and that the velocity change is ho-

mogeneous throughout the sampling medium, the daily velocity variation is just —dz/¢ = dv/v.

80
-0.10- 75 ;é,
~0.05 70 3

> -

2 0.00/ 65 &

& 60 3

0.05/ T

55 3

0.10/ - 5
52.2m| |50

2000 2002 2004 2006 2008 2010 2012 2014 2016

Figure 2.2: Observed dv/v stacked over all station pairs (black) with modeled dv/v due to thermo-elastic strain (dashed)
removed compared with groundwater change (blue) in the Baldwin Park Key Well. Grey bars indicate lowest historical
water levels of the Baldwin Park Key Well. Blue patches indicate times of drought.

DV/V REGIONALIZATION

We map duv/v spatially in 1 km x 1 km grid cells using the regionalization method of Brenguier

et al.>*. This simple inversion scheme approximates the scattering sensitivity of each station pair

as an ellipse. We set dv/v in all grid cells within 3 & of the straight line path between each station
pair as the difference in dv/v between the starting and end date of the period of interest. We then
average all grid cells over all the station ellipses. A gaussian smoothing function has been applied to
the dv/v maps in Fig 2.3 and 2.4. We did not use the sensitivity kernels of Obermann et al. "** that
assume homogeneous diffuse properties, which are unlikely to be satisfied in resonating sedimentary

basins.

1.1 WATER STORAGE FROM DV/V.

We calculate the change in groundwater storage 4V, in each grid cell in the SGV basin from duv/v

using a modified version of the recharge equation,
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AV, = S,484),8" (2.1)

where S, is the specific yield, 4 is the area of a grid cell in the regionalization of dv/v, A, , is
the change in seismic velocity between two dates, and ‘E* is the ratio of a unit change in hydraulic
head, Ab, to a unit change in A, /, %8, The product A, /o8" = Ab gives the average change in hy-
draulic head in a grid cell. S, varies from 0.03 to 0.24 across the SGV, with averages of 0.14, 0.08
and 0.09 in the central, eastern, and western parts of the SGV, respectively*'. We take Sy = 0.12as
a representative, average value for the entire SGV basin. Assuming that the inflation of the aquifer
was purely elastic'3°, we use the 2005 rain event (Jan 1 - Jun 1 2005) to calibrate 8* for the SGV.
A 16.8 m increase in groundwater level in the Key Well and a -0.00125 (—0.125%) change in duv/v
in the SGV basin gives a value of f* = —13280 m/(%) We find a similar negative value of
8" = —10900m/( Z—?i) using the dv/v and groundwater level changes found by Lecocg er al. +°.

To estimate a volume change within the SGV basin over the 2012-2016 drought, we integrate 4V,

over all grid cells.

2 RESULTS AND DiscussioN

The dv/v variations we measure at o.5-2.0 Hz, which is sensitive to the upper 1 £ of the basin,

are the most promising for groundwater monitoring at basin scale 182

. The change in groundwater
level in the Baldwin Park Key Well explains most of the variance in the evolution of dv/v in the SGV.
We observe three distinct functional forms in our dv/v measurements : 1) seasonal periodicity, 2)
impulsive events, and 3) multi-year linear trends (Figure 2.2).

We use a thermo-elastic model **® to remove seasonal dv/v due to surface temperature variations

(Fig. 2.2). We find that seasonal thermo-elastic strains induce perturbations in wavespeed of about

0.03%, much lower than the hydrological effects that perturb elastic wavespeeds that are about
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0.15%. The seasonal residual in dv/v we measure is thus a component of the seasonal recharge in

groundwater within the SGV basin 7.

34.2°N q.
34.1°N
34°N =
3
<
§ -0.08
—-0.16
33.9°N
u‘$ w“‘ u‘$ U‘S‘ u"$ g‘$ ,-'.é
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Figure 2.3: Regionalization of dv/v changes Jan 2005 - Jun 2005 following large precipitation event in the SGV. GPS
stations (red = vertical, black = horizontal) uplift and move away from center of aquifer. The dashed black lines indicate
extent of ray coverage. Scaling of dv/v and groundwater level is from 2005 rain event.

At the end of 2004, groundwater levels in the SGV were at an all-time low in the Baldwin Park
Key Well since measurements began in 1932. In contrast, the winter of 2004-2005 recorded the
largest rainfall in a 100-year period in Los Angeles with 1 72 of total precipitation. Water levels in the
Baldwin Park Key Well increased by over 16 7 in a span of five months. GPS stations recorded more
than 40 mm of uplift in the central part of the SGV ">>"*%, We find that dv/v decreased by 0.15%
in the same time frame. This impulsive drop in dv/v is similar in amplitude to that seen after nearby
earthquakes?**%7. The largest decrease in duv/v was in the center of the SGV (Fig. 2.3), where the
basin is deepest*”5, as were the largest deformations recorded with InSAR *3°. There is no statisti-
cally significant phase lag between the groundwater levels and and dv/v response, suggesting a purely

elastic response of the aquifer.
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Figure 2.4: dv/v and GPS measurements after the 2012-2016 drought. Regionalization of dv/v changes (Jan 2012- Jan
2017) during California’s worst drought. GPS stations move toward center of aquifer. Symbols are same as in Fig. 2.3.

During the drought of 2012-2016, groundwater levels declined in the SGV at a rate of 450 mm /yr,

272

which is one of the highest rates seen globally *7*. This multi-year drawdown, during a period of low
precipitation **?, was the dominant process in the increases in dv/v we measured in the SGV. The
largest increase in dv/v during the drought occurred at two stations (RIO,RUS) located within the
basin and atop the thickest part of the aquifer*'. Over the period Jan 2012- Jan 2017, when addi-
tional well data is available throughout the SGV, we find spatial correlation between the change in
dv/v and spatial and temporal patterns of groundwater change. The strongest increase in dv/v oc-
curs in the south of the SGV (Fig. 2.4). A small decrease in dv/v in the Raymond Basin over the
same time frame suggests that the SGV and Raymond basins are hydraulically separated+"'*¢. GPS
stations during the same time period measured a contraction of the ground surface that may result

from a elastic response of the basin.

The strong temporal correlation between groundwater levels in the Baldwin Park Key Well and
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dv/v (Fig. 2.2) and spatial agreement between GPS displacements and well levels at key periods of
time provide us confidence to map the change in groundwater level. We use the instantaneous elas-
tic response of the 2005 rainfall event to calibrate the conversion between dv/v and groundwater
level. Applying this calibration factor to the regionalization of dv/v from Jan 2012 - Jan 2017 yields
a water storage loss of 0.48 km?. This matches well with the additional .45 - 0.5 km> of water that
was pumped by from the main SGV Basin during the drought to meet water demand "5*.

Our results imply that the change in seismic velocity, dv/v, has tremendous potential to monitor
groundwater fluctuations in basins of moderate-size aquifers. We find an inverse and linear scaling
between duv/v and groundwater in the San Gabriel Valley. Our analysis is able to provide the wa-
ter volume change, at much higher spatial resolution than GR ACE data. It also the capabilities to
provide direct and continuous monitoring of the spatial variations in ground water levels, comple-

menting monitoring efforts from groundwater wells and GPS inversions of subsidence.
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Ambient Seismic Noise Cross-Correlation

on the CPU and GPU in Julia

People who like this sort of thing will find this the sort of thing they like.

Charles Farrar Browne
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1 INTRODUCTION

Noise correlation functions (NCFs), generated from the cross-correlation of the ambient seismic
field recorded simultaneously at a pair of seismic stations, recover information about Earth struc-
ture at spatial scales ranging from the near surface (meters) to the lowermost mantle (thousands
of kilometers) 23%145:29423%181,199 When averaged over long periods of time, NCFs converge to
band-limited approximations of the elastodynamic Green’s function between the pair of receiver

stations >5+°

8241232218 \With the wide range of length and time scales involved in such geophysi-
cal studies, computing NCFs can be a data-intensive technique, utilizing dense, high sample-rate
deployments (High/Large N) for near surface study '45 or multi-year to permanent deployments
lasting up to decades (High/Large T) for long term monitoring '#°.

In the last two decades, increases in computing power have allowed ambient noise processing to
become practical. While the total global seismic data stored by Incorporated Research Institutions
for Seismology (IRIS), the leading global manager and distributor of seismic data, is 0.66 PB to-
tal (as of July 1, 2020), Distributed Acoustic Sensing (DAS), which re-purposes fiber optic cables
as seismometers, will soon be generating PetaBytes of seismic data a year’. Due to the increasing
availability of complex and large (> 1 TB) seismic data sets, research in ambient noise seismology

requires high performance software to compute NCFs.

Seismology software has been written in a number of languages, including C/Fortran (SAC -
Goldstein et al. °*), Python (ObsPy - Beyreuther et al.**), MATLAB (GISMO - Celso et al. +°), R

192 Software suites

(RSeis - Lees '+*), and Unix (Computer Programs in Seismology - Herrmann
for computing NCFs have been written in Python (Lecocg et al. >, Goutorbe et al. *°, Jiang and De-
nolle *°), C++/CUDA (Fichtner et al. *°) and UNIX (Herrmann °*), among unpublished codes

written in other languages. The ideal computing language for ambient noise seismology would al-

low researchers to write high-level, performant code that scales from laptop to cluster. Currently,
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the choice of language dictates needs; compiled languages (C, Fortran, Shell) allow for fast execu-
tion time at the cost of slow development, while vectorized languages (Python, Matlab, R) allow

for rapid development and ease of use at the cost of slow execution time. The benefits/trade-ofts of
static vs dynamic languages for use in ambient noise seismology are emblematic of the two language
problem: prototyping is best done in a high-level language, while implementation should be done in
a low-level language *°.

To solve the two-language problem in ambient noise seismology, we developed SeisNoise.jl, a
package for ambient noise cross-correlation on the CPU and GPU written entirely in the comput-
ing language Julia. Julia is a dynamically typed, high-level language that compiles at run time into
low-level machine code®”. In Julia for loops execute as fast as C or Fortran, yet code is succinct and
readable like in vectorized languages such as Python or MATLAB. Julia is the only high-level dy-
namic language to achieve Petaflop performance*°*. SeisNoise.jl was designed to follow these prin-
ciples: it should be open source, use only a single computing language, be easy to use in a command-
line REPL (read-eval-print loop), scripting, and high-performance computing environments, use
intuitive syntax, and be both fast and memory efficient. Here, we describe the structure and exam-

ple use cases of SeisNoise.jl. To install SeisNoise.jl from the Julia REPL, type:

julia> ]
(vl 5 ) pkg> add SeisNoise

julia> using SeisNoise

Listing 3.1: Installation of SeisNoise.jl using the Julia package manager.

SeisNoise.jl’s source code, documentation and testing are available on Github at

https://github.com/tclements/SeisNoise.jl.
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2 SEISNOISE.JL STRUCTURE AND WORKFLOW

While there are a wide range of strategies to recover NCFs 21,243,227,87 typical ambient noise cross-
correlation workflows usually involve three steps: pre-processing, correlation, and post-processing.
The goal of pre-processing is to make raw seismic data amenable for cross-correlation, which usu-
ally entails dividing day-long segments of ambient noise into shorter (sometimes overlapping) time
windows **7 and down-weighting large amplitude signals, such as earthquakes or instrument irreg-
ularities*'. The correlation step is largely computational. Cross-correlation is often performed in
the frequency domain due to the speed and efficiency of the Fast Fourier Transform (fft). The cross-

correlation for a single time window is calculated in the frequency domain (w) as the cross spectrum,

Canl®) = Uy(@) Us(w), (3.1)

where Uy(w) and Up(w) are the Fourier transforms of the seismograms #,, () and #,(¢) at seis-
mometers 4 and B, respectively, and * denotes the complex conjugate. The resulting time-domain
cross-correlation, c45(7), is the inverse Fourier transform (§ 1) of the frequency-domain cross-

spectrum,

CAB(T) == S—l (CAB((U)) s (32)

where 7 denotes the cross-correlation lag time that is a real number (positive and negative).
The goal of post-processing is to generate one or more NCFs, 7,45(7), for each station pair 4B,

where

”AB<T) = <CAB1(T)7 CAB, (7)7 <o+ C4B, (7» (33)
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and () represents stacking across distinct time windows # = 1,2, ..., .

a) SeisData b) RawData c) FFTData d) CorrData

h |
. —.\

Figure 3.1: Data flow through objects in SeisNoise.jl. a) Ambient noise data read into SeislO SeisData object for prepro-
cessing and instrument response removal b) Windowed ambient noise data processed in a RawData object c) Fourier
transforms (shown as spectrograms) stored in a FFTData object d) Cross-correlations stored in a CorrData object.

SeisNoise.jl provides three custom data structures for computing NCFs: RawData stores am-
bient seismic noise data in short, overlapping time windows, FF'TData stores Fourier transforms
of these time windows, and CorrData stores the corresponding NCFs, as shown in Figure 3.1. Be-
cause Julia uses column-major ordering, each ambient noise time window in SeisNoise.jl is stored as
acolumn in a 2D array. The start time of each ambient noise window is stored as the number of sec-
onds since 1970 (UNIX time) and is accessible via the .t field for all three types of structure in Seis-
Noise.jl. Ambient noise data is accessible via the .x, .fft, and .corr fields for RawData, FFTData,
and CorrData structures, respectively. In addition to data, SeisNoise.jl structures hold numerous
types of metadata, including the start time of each time window, station name and geographic lo-
cation, sampling rate, instrument response, and processing notes (e.g. minimum and maximum
frequencies of the data after filtering, time and spectral normalization information, maximum lag
time in correlation, etc..). We introduce a general workflow for NCF processing using SeisNoise.jl

structures and functions in the following sections.
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2.1 CrOSS-CORRELATION PRE-PROCESSING

SeisNoise.jl relies upon SeisIO.jl for reading of ambient noise data and initial data handling **7.
Seismic data (SEED, SAC, SEG Y, Nodal, etc...) can be read locally using the SeisIO.jl read data
function or downloaded from IRIS or FDSN data centers using the get data function. SeisIO.jl
stores raw seismic data and station meta-data in either SeisChannel (single-channel data) or Seis-
Data (multichannel data) structures. SeisIO.jl provides methods for merging data, filling or remov-
ing time gaps, downsampling, detrending, tapering, removing instrument responses, and syncing
channel start/end times*’.

Cross-correlating short time windows, or overlapping time windows, has been shown to improve
signal-to-noise (SNR) ratio in NCFs '?#**7. The RawData structure in SeisNoise.jl allows one to
operate on many short, overlapping windows of ambient noise at once. RawData structure take
either SeisData or SeisChannel as input. For example, a day-long SeisData segmented into 30-
minute windows with 75 % overlap will yield a RawData structure R with 187 30-minute time
windows. The RawData structure facilitates the second phase of pre-processing: preparation of
time windows for cross-correlation. SeisNoise.jl provides functions for common time-window pre-
processing steps, including demeaning, detrending, tapering, filtering (lowpass, highpass, bandpass
and bandstop), time-domain normalizing (e.g. one-bit, root mean square clipping, running-mean
normalization), and spectral-whitening>'. SeisNoise.jl processing functions are applied to Seis-
Noise.jl structures, which then call low-level kernels on data®®. For example, calling detrend!(R)
applies a detrending kernel to each time window in R.x. The advantage of this paradigm is concise
production code: detrending requires a single line of code, rather than a for loop over each window.
In our opinion, this concise syntax allows users to focus on workflow rather than on computational

bookkeeping.
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2.2 CrOSS-CORRELATION PROCESSING

We proceed with cross-correlation in the frequency domain. The first step to cross-correlation is
taking the discrete Fourier transform of windowed ambient noise data. Since ambient noise data is
real valued, SeisNoise.jl computes discrete Fourier transforms using the real fast Fourier transform
(rfft), which ofter a 2-3x speed over a regular fft. The rfft function computes the real Fourier trans-
form of the data in a RawData object and returns a FF'TData object. The FFTData structure in
SeisNoise.jl stores ambient noise spectra (U(w)) and allows users to apply spectral operations, such
as whitening, in-place before cross-correlating.

Computing a cross-correlation in the frequency domain necessitates an element-wise multipli-
cation of two noise spectra and an inverse Fourier transform. The SeisNoise.jl correlate function
accepts two FF'TData structures, computes the Fourier-domain cross-correlation between com-
mon time-windows, and returns a two-sided time-domain cross-correlation, stored in a CorrData
structure. The CorrData structure provides additional metadata, such as the maximum positive
and negative cross-correlation lag time and distance, azimuth, and back azimuth between the two

stations.

2.3 PoOST-PROCESSING

The goal of post-processing is to convert raw NCFs into a more amenable format for scientific in-
put. This is usually achieved through ”stacking”, or adding, NCFs over time, which increases the
signal-to-noise ratio**. The number of NCFs generated in post-processing varies with the geophysi-
cal application. Time-independent studies, such as tomography>3 or virtual earthquakes °°, require
asingle NCF, while time-dependent applications, such as noise-based monitoring using coda-wave

181,36

interferometry , require many NCFs. Stacking in SeisNoise.jl is possible for arbitrary time pe-

riods from minutes to years, as specified by the user. SeisNoise.jl has multiple routines for stacking
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correlations including the linear, phase-weighted **#, robust 189 and autocovariance filter stacks 74,
Additionally, SeisNoise.jl has routines for rotating NCFs in arbitrary reference frames to a vertical-
radial-transverse reference frame '#+.

After stacking or rotating, CorrData structures (along with RawData and FF'TData) can be
saved to and loaded from disk using the JLD2.jl package, a pure Julia HDFs-compatible file format.
When saved to disk, CorrData are saved by component, e.g. ”ZZ” or ’EN”, then by start date in

YYYY-MM-DD” form.

3 SEISNOISE.JL PARALLELIZATION

Ambient noise cross-correlation lends itself to parallel processing. For a dataset with /V stations,
pre-processing and computation of Fourier transforms scale with Nin time, while the computation
of cross-correlation and post-processing scales with N? in time. Thus, most computational time in
ambient noise cross-correlation is spent cross-correlating and post-processing when working with
a reasonably large number of stations. Cross-correlations across distinct time windows (e.g Day 1
and Day 2) are independent, while cross-correlations within a single time window (e.g Day 1) are
dependent on the N Fourier transforms, Uj (), . . ., Un(w). Computing cross-correlations across
distinct time windows is thus “embarrassingly parallel”, while cross-correlating within a single time-
window requires either movement of individual U(w)’s among processing units, i.e. shared-memory
parallelism, or computation-level parallelism, such as multi-threaded matrix multiplication *°*.
Numerous options exist for parallelizing ambient noise cross-correlation. Previous authors
parallelized cross-correlation using the MapReduce framework via Hadoop 3, distributed mem-

48,120

ory parallelism via the Message Passage Interface (MPI) , job-based parallelism via a Struc-
tured Query Language (SQL) database 3%, shared memory parallelism via Open Multi-Processing

(OpenMP)*¢, and Graphical Processing Unit (GPU) parallelism via Compute Unified Device Ar-
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chitecture (CUDA)*¢. We use two types of parallelism in SeisNoise.jl: distributed-memory paral-
lelism via the Distributed.jl Julia module and GPU-parallelism via the JuliaGPU suite.

Our CPU-based parallelism is simple. We apply distributed memory parallelism across cross-
correlation time windows using the parallel map function, pmap, from Distributed.jl. pmap takes
afunctional input and “maps” it in parallel on a set of variable inputs. Unlike MPI-style paralleliza-
tion, which is also available in Julia, pmap handles all parallelization, data distribution, and load
balancing for the user®+. Cross-correlating an entire ambient noise data set using a pmap-based
workflow requires only defining a map function that computes NCFs between all station-pairs for
a single day, a list of day-long seismic trace file paths as inputs, and a list of parameters for cross-
correlations, such as the ambient noise window length, overlap between windows, and maximum
lag-time in the cross-correlation to save. We believe the parallel map framework is a particularly sim-

ple to implement cross-correlation parallelism.

3.1 GPU PARALLELIZATION

GPUs are highly parallelized processors designed for high throughput and computationally inten-

sive applications. GPUs are widely used to accelerate data-intensive seismic workloads, such as stack-

300 161,19

, earthquake detection , reverse time migration *, or wave propagation simulations '**.

ing
Order of magnitude decreases in processing time for ambient noise cross-correlation are possible us-
ing Nvidia’s CUDA platform for writing GPU code®®>7>'9. The trade-offs associated with writing
GPU code in CUDA C or C++ are the difficulty and time to write CUDA code, along with a lack
of code reuseability, i.e. code for the CPU cannot be reused on the GPU. This is not the case when
using Julia.

Julia provides a high-level interface to the CUDA GPU programming toolkit through the CUDA.jl
package*S. CUDA.jl provides an GPU-based array type for transferring and storing data on the

GPU and access to CUDA kernels, such as matrix multiplication and Fourier transforms. Data in
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SeisNoise structures (R.x, F.fft, and C.corr fields, for RawData, FFTData, and CorrData, re-
spectively) can move between an Array on the CPU to a CuArray on the GPU using the gpu and

cpu functions and the Julia pipe function, |>, as shown below.

# create raw data and send to GPU

R = RawData (S, cc_len, cc_step) |> gpu

send data back to the CPU

R = R |> cpu

Listing 3.2: Sending data to and from the GPU using Julia pipes.

In most cases, SeisNoise.jl uses the same code to process data on the CPU and GPU. For example,
processing functions in SeisNoise.jl, such as detrend, taper and correlate, are written at a high
level of abstraction, such that they can accept a CPU Array or a GPU CuArray with no modifi-
cation. This leads to, in our opinion, GPU code that is comprehensible for users with little GPU-
programming experience.

There is a variable time cost, on the order of 1-100 ms, which scales linearly with data size and
depends on GPU model, to transfer data from the CPU to GPU, or vice-versa. The GPU-based
processing strategy for SeisNoise.jl is thus to keep data on the GPU for as long as possible. This
entails transferring RawData to the GPU, then doing all pre-processing with RawData on the
GPU, computing Fourier Transforms and spectral whitening on the GPU, and finally computing
cross-correlations and stacking on the GPU. Stacked cross-correlations must be transferred back
to the CPU before saving to disk. A GPU-based cross-correlation code in SeisNoise.jl, thus looks
almost identical to a CPU-based single-core code, with the exception of added |> gpuand |> cpu

syntax for memory transfer to and from the GPU. See section 4.2 for an example of SeisNoise.jl
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GPU cross-correlation. We detail the speedup of GPU vs. CPU processing in the next section.

3.2 PERFORMANCE BENCHMARK

We benchmark SeisNoise.jl’s single CPU core, many CPU cores, and GPU performance using a
dataset similar to Fichtner et al. %°. We selected 188 vertical component LHZ channels with 1 Hz
sampling rate, operating from January 1, 2019 to January 1, 2020, with up-time greater than 98%
(more than 360 days) for the entire year. The entire dataset of LHZ waveforms is 23 GBs in size.
For the first benchmark, we test SeisNoise.jl’s processing performance on the CPU and GPU
against our previous ambient noise cross-correlation code written in Python using Numpy and
Scipy**. We cross-correlate one year of data for a single LHZ-LHZ station pair using a single core
on an Intel i7-8700K CPU with 32 GB RAM and a Nvidia GeForce GTX 1070 Ti GPU with 8
GB VRAM (video RAM). The code for each test is the same - we read the data using SeisIO.jl, then
convert immediately to RawData with a window length of 32,768 (21 to maximize fft efficiency)
seconds and an overlap of 6,000 seconds between windows. We apply a simple pre-processing
scheme of detrending, tapering, highpass filtering above 0.0o1 Hz, and time-domain normalizing
the RawData with one-bit*'. The data is then cross-correlated in the frequency domain, inverse
Fourier transformed, cut to a maximum lag time of 12, 000 seconds and stacked (instrument re-

sponse was not removed in this benchmark).
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Figure 3.2: Median run times for common ambient-noise processing steps using 1 year of LHZ cross-correlations be-
tween stations BK.CMB.00.LHZ and US.WVOR.00.LHZ. Times for Julia/GPU, Julia/CPU and Python/GPU are colored
white, grey and black, respectively. Median run time for conversion from SeisData to RawData in Python is not included.

The total time for cross-correlation with Julia/GPU is 0.503 s, Julia/CPU 1.7 s, and Python/CPU
2.7 s, giving a 3.5x speedup for Julia GPU vs CPU, and 1.5x speedup for Julia vs Python. Bench-
marking results for each step in the cross-correlation workflow is given in Figure 3.2. Interestingly,
the most time-intensive processing for a single station-pair is detrending and filtering. Julia/GPU
performs better than Julia/CPU and Python/CPU on detrending and cross-correlation, as these
operation involve matrix multiplications. Even though our test GPU has 18x theoretical floating
point performance than the test CPU, we only achieve a 3.5x speedup using the GPU. We ascribe
the CPU’s relatively higher performance to 1) non-negligible time taken to transfer data to and from
the GPU, 2) all SeisIO.jl pre-processing is on the CPU and 3) our non-optimal implementation of
Butterworth filtering on the GPU.

To test many-core performance, we cross-correlate all station-pairs in the year-long LHZ dataset
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(17,578 pairs in total). We apply the same processing steps as above, with the addition of instrument

response removal, following Fichtner et al. 86

. As a baseline, a stacked NCF for each station pair

in the dataset on a single core of the Intel i7-8700K took just under 1 hour and so minutes, while
our GPU implementation took 28 minutes on the Nvidia GTX 1070 Ti. The cross-correlations
generated during this test are shown in Figure 3.4. This compares to 163 days and 16 hours reported
to compute a similar dataset on the CPU and GPU, respectively, by Fichtner et al. 8¢ We tested the
SeisNoise.jI’s many core CPU performance using an Intel Xeon Platinum 8ooo with 48 cores and

192 GB RAM, which took 12 minutes. This shows that SeisNoise.jl can take on relatively heavy

computational workloads using only desktop resources.

4 ExAMPLES

4.1 PROTOTYPING IN THE REPL

Following the easy to use SAC?#, Obspy 26 and SeisIO.jl **7 suites for seismic data processing, Seis-
Noise.jl is designed for rapid prototyping in a command-line REPL (read-eval-print loop) en-
vironment. Below is a minimal working example of SeisNoise.jl meant to be used in a REPL.

In this example, SeisIO.jl is used to download one day of data from channels CL.SDD.BHZ and
CLPER.BHZ in the Southern California Seismic Network. The complete cross-correlation process
is then implemented in about 10 lines of code using SeisNoise.jl functions. The Julia dot notation
(e.g. detrend!.(R)) for broadcasting function calls to each element of an array is used to eliminate

duplicated processing steps for both stations or the use of a for loop.

using SeisNoise, SeislIO

param eters

fs = 40. # sampling frequency in Hz



freqmin , freqmax = 0.1 ,0.3 # min and max freq in Hz

cc_step, cc_len = 450, 1800 # corr step /length in S

maxlag = 60. # maximum lag time in correlation

smoothing half_ win = 12

# download data

S = get_data (”FDSN”,”CI.SDD ..BHZ,CI.PER..BHZ,”,src="SCEDC?”,
$s="72019-02-037,t="2019-02-04"7)

# pre - process data

process_rtaw ! (S, fs)

R = RawData. ([S[1],S[2]],cc_len,cc_step)

detrend ! . (R)

taper ! . (R)

bandpass!. (R, freqmin , freqmax , zerophase=true )

# compute correlation

FFT = rfft .(R) # Fourier transform

whiten! . (FFT, freqmin , freqmax) # whiten |[fmin ,fmax] Hz

C = correlate (FFT[1] ,FFT[2], maxlag) # cross - correlate

bandpass ! (C, freqmin , freqmax ) # filter data

abs_max! (C)

# plot

corrplot (C) # plot

Listing 3.3: Cross-correlation workflow testing in the REPL
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Figure 3.3: Example output of SeisNoise.jl code example. (Top) 30-minute cross-correlations from 2019/2/3 between
stations C1.SDD and CI.PER, filtered between 0.1-0.2 Hz. (Below) Stacked daily correlation for CI.SDD - CI.PER.

This examples produces Figure 3.3. Functions in Julia are just-in-time (JI'T) compiled the first
time they are run. Consequently, the example above will be slower the first time it is run than on

subsequent runs.

4.2 INTERACTIVE GPU PROTOTYPING

While most large-scale GPU applications are run on large clusters, researchers often test and bench-
mark GPU codes using local resources. One benefit to GPU computing in Julia is the ability to do
interactive programming through the REPL. This avoids the test-recompile-test procedure required
by CUDA C. Users can inspect data stored in memory on the GPU using functions from Julia’s

Base library such as min, abs, or sqrt. This allows for rapid data iteration and testing. For example,
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here is a complete cross-correlation routine on the GPU that can be tested in the REPL, where S1

and 52 are SeisData objects.

# send data to GPU

R1 = RawData (S1, cc_len, cc_step) |> gpu
R2 = RawData (S2, cc_len, cc_step) |> gpu
R = [R1,R2]

# preprocess on the GPU

detrend ! . (R)
taper ! . (R)

bandpass!. (R, freqmin , freqmax , zerophase=true )

# FFT on GPU
FFT = rfft . (R)

whiten! . (FFT, freqmin , freqmax )

# compute correlation and send to cpu

C = correlate (FFT[1] ,FFT[2], maxlag) |> cpu

Listing 3.4: GPU-based cross-correlation workflow testing in the REPL

4.3 LARGE-N PROCESSING

Seismic arrays with many sensors, so called “large-N” arrays, attempt to record the complete seismic
wavefield "**. Ambient noise cross-correlation analyses can benefit greatly from large-N datasets,

as close station spacing and high sampling rates increase spatial and temporal resolution for tasks
such as tomography 145196 or near surface monitoring using the change in seismic velocity 7. One

challenge of using large-N datasets is handling the massive amounts of waveform data, on the order
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of hundreds of gigabytes to terabytes per day, that sensors such as seismic nodes '# 578,253 distributed
acoustic sensing>77 or mixes of sensors*75, can produce. Processing these data is challenging for
all but the largest supercomputers. Strategies for processing large-N data products include locally

sparse tomography *?, local similarity '3, graph clustering ***

, the subarray method with double
beam-forming*’, and data compression '5#, among others.

Here, we present a strategy for computing ambient noise cross-correlations from large-N datasets
with SeisNoise.jl. We use data from a single day of the LArge-n Seismic Survey in Oklahoma (LASSO)
Experiment as a test dataset. The LASSO experiment used ~1,830 single-component nodal seis-
mometers in North Central Oklahoma, shown in Figure 3.47%, from April - May 2016 to capture
induced seismicity due to wastewater injection. We use data from the N' = 1, 825 stations oper-
ating on May 1, 2016. The data are sampled at 500 Hz and the total size of raw data stored in SAC
files is 294 GBs. We consider all combinations of station-pairs, giving 1,664,400 cross-correlation
pairs total. We follow a similar pre-processing strategy as in the benchmark in Section 3.2: we down-
sample the data to 250 Hz, remove the instrument response, bandpass filter between o.1 and 20 Hz,
and finally segment the data into 15 minute windows with s0% overlap (191 windows per day).

We compute a Fourier transform of the pre-processed data once for each station, then write the

frequency-domain data to disk. This takes 69 minutes using 6 CPU cores and would scale linearly

with increased CPU cores.
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Figure 3.4: Location of 1,825 stations used from the LArge-n Seismic Survey in Oklahoma deployment operating on May
1, 2016. Average station spacing is 400m. Location of array in Northern Oklahoma is shown on inset map.

We use GPUs to cross-correlate the LASSO dataset. We use 2 difterent GPUs in this example:
desktop (NVIDIA 1070 Ti) and server (NVIDIA V1oo), with 8GB and 32GB of VRAM, and 8
TFLOP (1 TFLOP = 10'? floating point operations per second) and 14 TFLOP of single-precision
performance, respectively. Each of these GPUs does not have enough VR AM to store all FFTs in
the dataset (293 GB) all at once. We thus use a processing strategy similar to the MPI-based strat-
egy of Chen et al.** to minimize I/O. We load stations into memory on the GPU in groups such

that the number of stations per group, N, times the size of each FFT in memory, 163 MB in
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our case, is about 30-40% of the total VR AM for each GPU (N, = 18 and 73, for NVIDIA
1070 Tiand Vioo GPUs, respectively). This allows us to hold two groups of FFTs in memory on
the GPU at a time, while also reserving memory for output cross-correlations. We first load one
group on the GPU and cross-correlate all stations in the group. Intra-group cross-correlation give
(Npg * (Nyg — 1)) /2 station pairs per group. While the first group is cross-correlating on the GPU,
we use asynchronous I/O to load the second group of FFTs into RAM on the CPU. We then cross-
correlate each FFT in the first group with every FFT in the second group, for a total of I\T;g station
pairs. We then loop through every combination of groups, using asynchronous I/O to maximize
the use of our GPUs. Daily cross-correlations are stacked before being transfer back to the CPU
and written to disk. A moveout plot for all 1,664,400 pairs stacked for a day in som inter-channel

distance is shown in Figure 3.s.
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Figure 3.5: Stack of 1,664,400 cross-correlations from the LASSO array filtered in the frequency band 1-2 Hz and
stacked in 50 m bins.

GPU are efficient for computationally demanding tasks. By our calculations, a single core of the
CPU used in Section 3.2 would take 6.75 days (or 162 hours) to compute the cross-correlations
alone of the single-day LASSO dataset. Moving the computation to the GPU takes 31 hours on a
1070 Ti GPU (a speed up of more than 5 compared to the CPU) and 16 hours on a Vioo GPU.
Processing time scales linearly with GPU performance. As seen with the performance of neural net-

136

work computations '*°, we expect Large-N cross-correlation results will improve with faster GPUs

and even larger datasets.
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s FUTURE DEVELOPMENT

We have taken a functional, minimal, and modular approach to the development of SeisNoise.jl.
As the breadth of research topics in ambient seismic noise continues to grow 7%, we do not expect
the core of SeisNoise.jl, its data structures and core functions, to change. This will allow future
researchers to employ and extend SeisNoise.jl for their particular needs. For example, we have imple-
mented a simple package for ambient seismic velocity monitoring (https://github.com/tclements/SeisDvv.jl)
that is compatible with SeisNoise.jl. We anticipate that computation-heavy ambient noise research,
such as global full-waveform inversion*'? or structural imaging using Distributed Acoustic Sens-
ing®, could be ported to the GPU using SeisNoise.jl and Julia. Contributions to SeisNoise.jl and
new packages based on SeisNoise.jl are welcome on Github.

Plotting in Julia is still in its infancy. The time-to-first plot in Julia is long (think seconds, instead
of milliseconds) because Julia code is just-in-time compiled, rather than pre-compiled. Subsequent
plot calls are relatively fast. All plots (except Figure 3.1) in this manuscript were made using the na-
tive Julia plots library, Plots.jl, which is based upon GR framework (gr-framework.org). There are
other options for plotting in Julia, including, but not limited to, the web-based Plotly framework
(https://github.com/plotly/Plotly.jl), the popular Python-based PyPlot (https://github.com/JuliaPy/PyPlot.jl) ***,
and Makie (https://github.com/JuliaPlots/Makie.jl), a library high level plotting on the GPU in Ju-
lia. Maps, such as Figure 3.4, can be made with the Julia wrapper for the Generic Mapping Tools .
Due to the current flux of plotting in Julia, we may reevaluate the use of Plots.jl for plotting with
SeisNoise in the future.

While GPU programming in SeisNoise.jl is promising, it is in no way yet optimized. Our per-
formance benchmarks indicate a 3-4x speedup going from cross-correlation on the CPU to GPU,
whereas the theoretical maximum speedup is somewhere between 10-20x. We suggest three future

improvements to close that gap. The first is porting all SeisIO.jl functionality to the GPU. Seis-
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Noise.jl depends heavily on SeisIO.jl for initial preprocessing, such as downsampling and instru-
ment response removal. Modifying SeisIO.jl, such that it can process SeisChannel on the GPU,
will allow for an end-to-end GPU-based cross-correlation workflow. At the time of writing, this
project is under development. The second improvement is to write optimized GPU kernels using
CUDA.jl. Currently, the GPU code in SeisNoise.jl is written in pure Julia. We anticipate writing
custom CUDA kernels using CUDAL.jl, will result in large speedups for our filtering operations.
Our final suggested improvement is to use NVIDIA Tensor Cores for cross-correlation. Tensor
Cores are specialty GPU hardware that offer 10x the matrix multiplication performance of CUDA
cores. We anticipate implementing time-domain cross-correlations in SeisNoise.jl to use Tensor
Cores could result in a significant speedup in the case where no pre-whitening of the time series

is required "5*. GPU-compute in SeisNoise.jl is only available with NVIDIA devices at the time
of writing. GPU-compute using devices manufactured by Intel and Advanced Micro Devices are
not yet supported in Julia, though packages for both the AMD Radeon Open Compute platforM
(ROCm) (AMDGPUnative.jl) and the Intel oneAPI unified programming model (oneAPLjl) are
currently under development.

In the coming years, we expect that cloud computing, which is optimal for embarrassing paral-
lel jobs, will become the dominant platform for assembling massive ambient seismic noise datasets,
performing ambient noise cross-correlation and sharing results '+, Cloud-based workflows will be
essential for decreasing time-to-science. While we have only tested SeisNoise.jl on Amazon Web
Services using the Julia AWS API (AWSCore.jl - https://github.com/JuliaCloud/AWSCore.jl), inte-
gration of SeisNoise.jl with other cloud-based compute systems, such as Google Cloud, Microsoft
Azure and the NSF-funded Jetstream cloud *#3, will give researchers options for their cloud comput-

ing needs.
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Single Seismic Station

Groundwater Monitoring

You can observe a lot just by watching.

Yogi Berra
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1 INTRODUCTION

The autocorrelation of ambient seismic data is a suitable technique for monitoring changes in
groundwater level. Heterogeneities in Earth’s upper crust readily scatter seismic energy '°. Scattered
waves are more sensitive to perturbations in the subsurface than direct waves, as scattered waves
sample the same location multiple times. This allows scattered waves to accumulate phase delays in
response to perturbations. Grét et al. °7 showed that the seismic velocity in a laboratory sandstone as

measured with scattered coda waves *4*

decreased linearly with increasing saturation, whereas there
was no noticeable change in velocity for direct waves. At frequencies above 1 Hz, anthropogenic
sources, such as vehicles, wind farms, oil and gas production, and other industrial activities generate
high-frequency surface waves that are observable on seismometers kilometers away '5%7225.

Claerbout 55 was the first to theoretically derive the relation between the autocorrelation of earth-
quake seismograms and the surface response to an impulse force, or the zero-offset Green’s func-
tion. It was only twenty years after this result that Claerbout et al. >* speculated, though did not
prove, that the autocorrelation of ambient seismic noise shoxld yield a reflection seismogram, based
on the fact that the autocorrelation of white noise yields an impulse function and that the auto-
correlation of ambient seismic noise yields an impulse function. Physically, the autocorrelation of
ambient noise, which is the cross-correlation of waves ascending from depth with down-going waves
reflected from the surface 4, yields singly and, at later lag times, multiply-scattered waves from re-
flectors at depth. Rickett and Claerbout *°5 turther speculated that continuous autocorrelation of
ambient noise could yield real-time monitoring of the subsurface.

There are two options for single-station ambient noise cross-correlation: auto-correlation (AC),
which is cross-correlation of a ground velocity component (east, north, vertical) with itself (e.g.

east-east, north-north, or vertical-vertical), or single-station cross-correlation (SC), which is the

cross-correlation of differing channels (e.g. the causal and anti-causal sides of the east-north, east-
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vertical, etc.. components) 198 T focus the following analysis on SC functions, as they provide more
stable results and more independent measurements (6 vs 3) than AC functions'***7". SC func-
tions have differing sensitivities: the east-north component is sensitive to Rayleigh and Love waves,
while the east-vertical and north-vertical components are sensitive to Rayleigh waves only '°*. How-
ever, empirically, there are numerous examples that show that body-wave information may be re-
covered from ambient-seismic noise AC and SC functions, in a similar fashion to receiver func-
tions 263,65,57,222.

Changes in groundwater level (pore pressure) affect both the phase and amplitude of seismic
waves. Amplitude changes can be recovered through characterizing seismic attenuation, the rate of
decay of seismic waves. In most rocks, attenuation increases with increasing saturation *>°. Usually
it is easier to measure the attenuation of coda waves (Q, 1), which sample more area for longer time,
than direct waves '°. Determining the cause of temporal changes Q[_1 is often inconclusive - many
authors have not found a link between Q. and earthquakes’>*#, though Q. in California varies
on the order of ~ £30% through time*#7'5>. A Q! decrease after eruption at Mt. St. Helens
suggest that Q! is sensitive to fluids®s. In Chapter 1, we introduced a method to monitor seismic
attenuation continuously over decades using SC functions from a single seismometer.

Phase delays of seismic waves are the result of changes in seismic velocity. Calculating seismic
velocity change measurements, dv/v, from single-station ACs and SCs has gained popularity in the
last decade due to their localized spatial sensitivity and small computational footprint - a network
of 7 stations scales with 7 in time for AC vs #* for CC. dv/v from ACs has been employed to mon-

itor volcanic eruptions 3, earthquakes >°4>71:1°8

and more recently, for groundwater '*? and soil
moisture monitoring ' '# in local settings. In aquifers, there is an inverse relationship between satura-
tion (groundwater level) and seismic velocity **5. There are several scales at which the perturbation
in seismic velocities have been associated with hydrological processes - the near surface, upper 10

114,180

meters, soil moisture and shallow water table , changes in permafrost at depth '3, groundwa-

46



268,58 and deep changes in pore pressure at up to 8 km

ter level changes from so - soom depth*>©
depth 7276,

Subsurface hydrology operates at a range of scales: from the surface to kilometers in depth, from
meters to hundreds of kilometers spatially, and from seconds to decades temporally. The spatial
sensitivity of a groundwater well can be on the order of meters to kilometers, depending on the rate
at which an aquifer transmits water and the amount of water released from storage when the head
in the aquifer falls>*>**3. To understand their spatial sensitivity, I take the example of a pumping

well. Theis*®" expressed the drawdown (difference in hydraulic head) Ah(r, £) in the vicinity of a

well with the pumping rate Q,

00—z
Ab(r,t) = él %dz, n= fj[i’ (4.1)
based on the exact analogy to the cooling of a metal plate and where 7 is the radial distance from

the well, 7'is the coefficient of transmissibility, # is a dimensionless quantity, S'is the coefhicient of
storage, and the definite integral [ " du is the exponential integral >*°. The radius of the cone
of depression due to groundwater pumping is dependent only on S, 7, time of pumping #, whereas

26 Duye to their decreasing

the amplitude of Ah(r, ¢) is linearly proportional to the pumping rate Q
spatial sensitivity with increasing 7, groundwater level measurements from groundwater wells can be
thought of as point measurements.

Groundwater well measurements and single-station cross-correlation functions share a diffusive
spatial sensitivity. Using a diffusion approximation, Pacheco and Snieder '** found the 3D sensitiv-
ity kernel for the propagation of scattered waves, K3p, for a co-located source and receiver to be,

1 —r
5P o) (42)

K3D(r, I) =

where r is the location of the receiver, 7 is the distance from the source, ¢ is the propagation time,

47



and D is the diffusion constant. From equation 4.2, I note that for a fixed 7, sensitivity increases
with z. In a diffusive regime, the distance travelled from the source is related to the square root of
time, » &~ /4Dt"*®. Ambient seismic autocorrelations (AC), where the source and receiver are
co-located, are thus most sensitive to the area directly below the seismometer, which agrees with
Claerbout’s conjecture that an AC is a reflectivity response. This is in contrast to ambient noise
cross-correlations (CC), which are sensitive to the regions beneath a pair of seismometers and the
path between them "*%%*. Noting the similarity of equations 4.1 and 4.2 with respect to the scaling
of 7and ¢, I believe ACs are a more natural analog to groundwater wells in the case of groundwater
monitoring than CCs. The new contribution of this analysis is a comprehensive comparison obser-
vations derived from hydrological, seismic, and geodetic measurements, and of empirical and theo-
retical hydrological models. In particular, I develop a transfer function between dv/v and ground-
water level changes, which I derive using poro-elastic and nonlinear elastic theory and validate using

hydrological observations and geodetic water proxies.

2 Data

For this chapter, I use 18 years of three-component, continuous seismic velocity data from South-
ern California Seismic Network station CL.LJR to calculate the change in seismic velocity, dv/,
through time. CL.LJR is located in the Tejon Pass between the San Emigdio and Tehachapi Moun-
tains *°, about 1.5 km east of both the San Andreas Fault and Interstate I-s. Additionally, I gather
daily precipitation data from the Parameter-elevation Regressions on Independent Slopes Model
(PRISM) dataset, weekly Liquid Water Equivalent (LWE) estimates from the Gravity Recovery

and Climate Experiment (GRACE) and Gravity Recovery and Climate Experiment Follow-On
(GRACE-FO) missions**', annual groundwater measurements from USGS well 344614118454101,

and weekly groundwater measurements from wells in the Castac Lake Valley Basin #*. Groundwater
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proxy data have differing time spans and sampling rates - GRACE LWE data spans from 2002 until
now, with a slight gap in 2017-2018 between the end of GRACE and the launch of GRACE-FO.
PRISM precipitation data is daily from 1985 until now. Groundwater level measurements from
well 3446141184547101 startin 2005. The location of instruments and dataset grid cells used in this
chapter are shown in Figure 4.1. GRACE data from CSR GRACE/GRACE-FO are sampled in
0.25° x 0.25° grid cells, but their true resolution is near 250-300 km due to the band-limited nature

of GRACE and smoothing applied during processing**'.
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Figure 4.1: Location of seismometer CI.LJR (gold triangle) and groundwater proxies. The chartreuse rectangle denotes
the 4km x 4km precipitation grid cell from PRISM dataset. The black line indicates the path of Interstate 5 through

the Tejon pass. The dashed blue circles approximate limit of spatial sensitivity of CI.LJR autocorrelation at lag times of

7 = 2 and 8 seconds, respectively. The filled blue dots indicate position of nearest groundwater wells to CL.LJR. The
orange rectangle denotes 0.25° x 0.25° grid cell from CSR GRACE/GRACE-FO RLO6 version 2 Liquid Water Equivalent
(LWE) dataset.

2.1 PrecieitaTioN AT CLLJR

CLLJR islocated in a Mediterranean climate, typified by mild, wet winters and hot, dry summers 76
- nearly all rainfall occurs from October to May. Daily precipitation levels at CLLJR are well ap-

proximated by an exponential distribution (P < le — 4)*°*. Annual precipitation totals are heavily
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dependent on large storms - the wettest 10% of days account for 49% of the annual rainfall®, as

shown in Figure 4.2.
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Figure 4.2: Cumulative annual (Oct 1 - Sep 30) precipitation levels near seismic station CI.LJR for wettest 10% of days
(red) and remaining 90% of days (blue) with rainfall.

In California, annual precipitation totals are heavily dependent on large storms - the wettest 10%
of days account for 49% of the annual rainfall®, as shown in Figure 4.2. The variance in annual
precipitation at CLLJR is strongly linked to the the number and intensity of large storms in a given
year. Since 1992, there has been a 54% reduction in cumulative annual rain contribution from the
remaining 90% of wet days (P = 0.002). There is also a clear absence in extremely wet years, the last
one being in 2005. Two time periods stand out from the precipitation record. First, in the winter
of 2004-2005, the annual precipitation was over 3 times the median annual value and there were 18
days with large storms. Second, in the drought years of 2012-2016, annual precipitation was below
the median annual value for five consecutive years and there were on average only 3 large storms a
year. The years 2012-2015 were without precedence in paleoclimatic history, representing a more

than 20,000 year event>®. These swings from deluge to drought are due to the presence/absence
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of a high-pressure ridge off the west coast*’°, dubbed the “Ridiculously Resilient Ridge”*#?, which

prevent large storms from reaching inland California 69,

2.2 GROUNDWATER NEAR CL.LJR

CLLJR sits on a local topographic high, the Tejon Lookout, in the southerwestern edge of the
Tehachapi Mountains, where pre-Cretaceous metasedimentary rocks outcrop at the surface *°.
Groundwater in the Tejon Lookout flows into the Cuddy Canyon Basin to the West, Peace Valley
to the South, and Castac Lake Valley Basin (CLVB) to the north. Flow is likely constrained by the
San Andreas Fault to the South and the southern branch of the Garlock Fault to the north. The
CLVB is a small (~ 14km?) groundwater basin that provides drinking water for the town of Lebec,
CA and irrigation for nearby agriculture. Groundwater is thought to be unconfined in the entire
CLVB. Groundwater wells in the CLVB have declined by 25 m since 2008, due to the combined ef-
tects of drought and groundwater extraction for residential use, irrigation and maintaining the level
of Castac Lake**, as shown in Figure 4.3. Groundwater levels in the Peace Valley to the southeast
of CL.LLJR show modest ~ 2 declines over the last decade. CLLJR is located 2 km away from and
300 m above the nearest pumping well. I thus assume changes in groundwater levels at CLLJR are

due to deep percolation from precipitation’? and not due to pumping.
pp precip pumping
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Figure 4.3: Groundwater levels in the Castac Lake Valley Basin. The monitoring and pumping wells are shown in light
blue and red, respectively. The elevation of Castac Lake level shown in black.

3 METHODS

3.1 AMBIENT SEISMIC SINGLE-STATION CROSS-CORRELATIONS

I calculate daily SC functions for station CLLJR using all available data from 2002 - 2021 in the
Southern California Earthquake Data Center (SCEDC) public dataset. I process the east, north,
and vertical components in daily chunks using the SeisIO.jl module for seismic data processing in
the Julia language '*7. To minimize the impact of sensor or data transmission issues, I taper data
gaps with a 100 second cosine window. Daily waveforms are demeaned, detrended, and highpass fil-
tered above 0.4 Hz before removing the instrument response. I then resample data to 40 Hz before
extract windows of 30 minutes with an overlap of 75 % between windows from the daily trace**7.

I use the SeisNoise.jl module detailed in Chapter 3 to further process the windowed ambient noise
data’?. Windows are demeaned, detrended, and tapered with a 20 second cosine window. I then

whiten data between o.5 and 19 Hz and apply one-bit amplitude normalization**. I cross-correlate
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the east-north (EN), east-vertical (EZ), and north-vertical (NZ) components in the frequency do-
main before transforming them back to the time domain. A daily SC is then created for each com-
ponent by stacking all 30 minute windows for each day using the robust stack algorithm (Yang et
al., 2021 to be submitted to Geophysical Journal International). Daily NZ correlations for station

CLLJR for lag times 7 € [2,10] seconds are shown in Figure 4.4.
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Figure 4.4: North - vertical single-station cross-correlation for station CI.LJR. Top: Daily NZ cross-correlations from
2003-2021 for lag times 7 € [2, 10] seconds in the 2-4 Hz frequency band from CI.LJR with amplitude scaled by 7.
Bottom: Daily power spectral density for station Cl.LJR. White regions indicate data gaps or instrument failures.

3.2 CHANGE IN SEISMIC VELOCITY, DV/V

I compute changes in seismic velocity, dv/v, using the stretching technique **°, which assumes that
relative time delays, d7/7, in the arrival of coda waves are linearly related to changes in velocity of
the medium, dv/v = —dz/7. To recover dv/v, daily SC functions are “stretched” at times 7(1 — ¢)
by various stretching factors £ and compared to a reference SC waveform. The recovered velocity

change is then given by the stretching factor ¢ = dv/v that maximizes the correlation coefficient,
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where SC; is a daily SC, SCj is the reference SC, and # and #, are the start and end of the coda

CCle) =

(4.3)

window used to calculate dv/v, respectively98. Before stretching, I filter the SC functions in 4 fre-
quency octaves, 1-2 Hz, 2-4 Hz, 4-8 Hz and 8-16 Hz. Rayleigh wave sensitivity kernels for CLLJR
for each octave are shown in Figure 4.7. I calculate dv/v in each frequency band using 10-day stacks
of SCs against the reference stack of all ~20 years of SCs. I apply stretching to both the causal

and acausal sides of SCs in a window between 4 - 7, and 16 - T, seconds lag time, where

Towin = 1/fmin> and fo, is the minimum frequency in a frequency band, with trace stretching
between ¢ = —5% and 5%, in increments of 0.001%. I then take a weighted average of dv /v values
using the correlation coefficient of the stretched window for the causal and acausal sides of the EN,

EZ, and NZ components,

Zi\; ffk “dvfvg,
N
D ket C?/e

to give a single dv/v; measurement per day, where N = 6 and ¢ is the maximum correlation co-

dv/v; = (4.4)

108,271

efficient between the £ component of the daily and reference SCs after stretching , as shown

in Figure 4.5.
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Figure 4.5: dv/v in the 2-4 Hz frequency band for CI.LJR. Top: Average dv/v for station CI.LJR using equation 4.4, where
the colorbar indicates c;;, value. Bottom: Correlation matrix for all SC component dv/v times series.

3.3 CHANGE IN CODA ATTENUATION

Here, I propose to monitor the relative change in coda wave attenuation, Qc_l, from ambient noise
SC functions. Given the source-receiver configuration, the single-station noise-derived Q;l is simi-
lar to a local site effect. Unlike measurements of Q:l for earthquakes, here the source is an impulse
delta force at the receiver site. I follow the derivation of Goz et al. 5, who introduced temporal mon-
itoring of Q. ! using pairs of nearly identical earthquakes (doublets), which we call AQ.". Tassume
that the early coda of autocorrelations are made of surface waves "*»'%429%_ The spectral amplitude

of coda waves at lapse time # and angular frequency w is given by Ak7 and Chouet *°,

Aiw,1) = Co e 12 (4.5)
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where C; is the amplitude of the single-station correlation on day 7 and « = 1 for surface waves. The
reference SC function is a simple linear stack over all daily SC functions. Le. 4,/(t) = % SN Ad2),
where 4, is a daily SC function. The logarithm of the spectral ratio of an SC function on day 7 and

the reference is,

In (M) = In <Ccf> + (%AQ;I) ¢ (4.6)

where AQ; ' = Q' — Q;l I note that equation 4.6 is linear in terms of # and does not de-
pend on the geometric spreading factor a. The workflow to measure AQ; ! is similar to the Moving-
Window Cross-Spectrum (MWCS) technique used to measure phase-delays in coda wavess°. I first
smooth A;(z) over the previous 9o days to improve signal to noise ratio. I then select 3.2 second
Hanning windows in the SC functions starting at # = 5 second lag time. I then apply a 0.5 second
spectral smoothing before computing the log spectral ratio in each window. I then slide through
the lag times in 0.2.5 second steps until a lag time of # = 10 seconds. For each frequency w, T use a
weighted linear regression to solve equation 4.6 for AQ."!, where the weights are the cross-coherence
between A;(w, ¢) and 4,,(w, ¢) in each window. I then take the average of each AQ}™ () measure-

ment in the frequency band 2-4 Hz as the representative AQ; .

3.4 MODELING GROUNDWATER CHANGES FROM PRECIPITATION

Precipitation is one of the sources of groundwater recharge and thus can be used to estimate changes
in groundwater levels. In Earth system science, inference methodologies fall into two categories: em-
pirical and theoretical. Among the theoretical approaches to estimate groundwater level, physics-
based models numerically simulate three-dimensional groundwater flow, but rely on a detailed
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knowledge of the aquifer and host rock properties *>°. For areas where detailed hydrological parame-

ters are unknown or undetermined, simpler theoretical methods, such as the pore pressure diftusion
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model have been adopted by numerous authors to estimate changes in groundwater levels from pre-
cipitation >°7:27¢:147:27¢ I this contribution, I discuss 3 main methods to predicting ground water:
two based on poro-elasticity and one based on empirical measurements.

The simplest models of groundwater level changes couple Darcy’s or Boussinesq’s equations with
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precipitation input. Sens-Schonfelder and Wegler**° developed a model for groundwater levels after
precipitation based on the assumption that under a linearized Depuit-Boussinesq flow, drainage

occurs exponentially as,

Ab(r) = ZPS;'Z)"(_“(”_”” (47)
n=0

where @ is the porosity and p(#;) is the amount of precipitation on day #. This model approxi-

a

mates the classic baseflow recession curve Q = Qpe™#, where Q is the rate of flow, zis time, Qy is the

flow when # = 0, and  is a constant that depends on the time scale of recession 5.
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Poro-elasticity couples pore pressure, stress fields, and input source terms 228, Roeloffs*'* calcu-

lated the coupled poro-elastic response at depth # due to a load of amplitude py at the surface as,

P(r,t) = m]yoe;f[([k;)l/z] + poerfe [(4&’)1/2} , (4.8)

where erf'and erfc are the error and complementary error functions, respectively, ¢ is the diffusiv-
ity of porous material, ¢ is the time since the load was applied, », is the “undrained” Poisson’s ratio,
and B is the Skempton’s coefficient. B is close to 1 at the surface and decreases with depth*'*. The
first term on the right side of equation 4.8 is the undrained poro-elastic response due to elastic load-
ing, whereas the second term on the right side of equation 4.8 is the drained poro-elastic response
due to diffusion. The medium response is “undrained” when there is no fluid flow in response to
a change in stress Ag;**. At zero lag time, the response is undrained, while at infinite lag time, the

response is fully drained. Earthquakes and elastic loading from precipitation are natural examples of
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stresses that stimulate undrained responses.
Talwani et al.*57 modified Roeloffs *'*’s model to accommodate the change in pore pressure at

depth due to a series of precipitation loads, given by,

_ B(1+7,) © r e r
LR DX (= B e B

where 7 - dt is the number of days since the start of the rainfall time series and dp; = pgdh is

the groundwater load change variation due to precipitation db on day 7. Rivet et al.**7

and Wang
et al. *7°, among others, have used the drained part of equation 4.9 to model pore pressure changes
due to precipitation at depths down to 8 km, which is reasonable due to the low values of B at these
depths. On the contrary, near-surface groundwater level changes, such as I expect at CLLJR, may
rather be the result of an undrained response.

Recently, Smail et al. **° introduced the empirical approach of cumulative deviation from the
moving mean (CDMk) of precipitat