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Abstract

Aquifers are vital groundwater reservoirs for residential, agricultural, and industrial activities
worldwide. Tracking their state with high temporal and spatial resolution is critical for water re-
source management at the regional scale yet is rarely achieved from a single dataset. Here, we show
that variations in groundwater levels can be mapped in space and time using perturbations in seis-
mic velocity (dv/v). We employ the computing language Julia and cloud computing resources to
make daily measurements of dv/v across California from the cross-correlation and auto-correlation
of the ambient seismic field. We compare our results to estimates of groundwater from groundwa-
ter wells, precipitation and satellite measurements. dv/v reproduces the groundwater level changes
that are marked by the multi-year depletions and rapid recharges typical of California’s cycles of
droughts and floods. dv/v correlates spatially with vertical surface displacements and deformation
measured with GPS and the GRACE satellite.
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1
Introduction

I frequently hear music in the very heart of noise.

George Gershwin

Groundwater is the largest reservoir of fresh water globally, supplying one third of the water

used for residential, agricultural, and industrial use4,74. In the last half century, over-withdrawal of

groundwater has led to subsidence and a loss of groundwater storage in numerous aquifers across

1



the world134,90. This is especially problematic for more than two billion people worldwide that live

farther than 5 km from a source of surface fresh water137. Compounding past and present declines

in groundwater is the role of climate change, which will lead to more frequent and pronounced dry

and hot years, along with stronger extreme precipitation events in places like California251,259,70.

Here, I propose two seismic proxies, the relative change in seismic velocity, dv/v, and the change

in coda attenuation, ΔQ−1
c , obtained from the cross-correlation of ambient seismic noise, to moni-

tor groundwater levels, specifically hydraulic heads. These new proxies allow for groundwater mon-

itoring at a range of spatial and temporal scales, frommeters and minutes to hundreds of kilometers

and decades. This thesis builds on fundamental advances in theory, laboratory measurements, seis-

mic observations, and computing power that have allowed ambient seismic monitoring to become

possible in the last two decades175. To do so, I develop relations between our seismic measurements

and hydraulic heads, using both an established theoretical framework and an empirical approach.

To scale the analysis from the single station to the network scale, I introduce newmethods for ap-

plying high-performance and cloud computing to seismic data. This thesis is organized into seven

chapters, including this introduction, where I develop the theoretical foundation to relate seismic

and hydrological observations, and a short conclusion.

1 Groundwater monitoring using hydrology and geodesy

Groundwater monitoring is difficult due to a lack of knowledge of the subsurface and a sparsity of

groundwater measurements134. Conventionally, hydrologists map groundwater recharge, flow into

the saturated zone, across an aquifer using a network of monitoring wells157 and the groundwa-

ter fluctuation method100. The method converts changes in hydraulic head h = P
ρ0g

+ z, where

P is pressure, ρ0 is the density of water, g is the gravitational acceleration at the surface, and z is a

reference datum, to recharge using the specific yield, Sy, which relates the volume of water released
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from storage per unit decline of head Δh100. The recharge,R, at each point in an aquifer is then,

R = SyΔh/Δt, where t is time. The groundwater fluctuation method is only as precise as the sam-

pling frequency of measurements and the spatial density of groundwater wells100.

A second more sophisticated approach is the numerical simulation of Darcy’s law92 in a poroelas-

tic medium, which requires knowledge of the hydraulic conductivityK, hydraulic gradient Δh/Δl,

and the area upstream of the measuring site100, and gives a more accurate model of groundwater

flow. Numerical models are limited by the imprecise knowledge ofK223, which can vary over 14

orders of magnitude over short spatial scales88.

Groundwater extraction induces surface elevation changes that are sometimes dramatic. In par-

ticular, a majority of areas experiencing rapid subsidence in the United States are correlated with

excessive groundwater extraction89. When groundwater levels are lowered, pore pressure declines,

and the pore space compacts due to a higher effective stress in the sediment matrix264. The mani-

festation of this compaction at depth is subsidence at the surface. In recent years, geodetic methods,

such as Global Positoning System (GPS) and Interferometric Synthetic-Aperture Radar (InSAR),

have shown promise to infer groundwater levels by monitoring land subsidence90. Surface displace-

ments measured by GPS provide high temporal but sparse spatial resolution of groundwater level

changes18,130,118, while those measured by InSAR provide high spatial resolution but limited tem-

poral resolution130,91,47. Similarly, gravity measurements from the GRACE satellite are sensitive to

water mass changes, but only at large wavelengths, and suffer non-uniqueness between water mass

and aquifer depths210,292.

2 Measuring the seismic velocity change, dv/v

Seismic travel-time measurements provide indirect measurements of subsurface structure and me-

chanical properties, such as density, elastic constants, or fluid saturation. Travel-time tomography
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using earthquake body waves (P and S-waves)80 or noise correlation functions233 can retrieve lateral

or vertical static variations in subsurface properties, while repeated or continuous travel-time mea-

surements can recover temporal changes in subsurface structure, properties, or fluids62,198,293. This

thesis will consider temporal changes to the subsurface, with particular emphasis on fluids. When

attempting temporal monitoring, we must consider both the seismic source and seismic phase with

which we want to explore the subsurface. Seismic sources can be divided into active, such as earth-

quakes193, air guns198, electric pulses293, explosions177 or oscillators62, or passive sources, such

as ocean waves285,104,16, wind105 or background anthropogenic activity that generates emergent

waves200,72. Travel-time measurements can be made with impulsive, ballistic waves or multiply-

scattered, coda waves. Ballistic waves, usually from earthquakes, have high signal to noise ratio, but

uncertainties in the origin time and relative infrequency of the earthquakes hamper their use for

travel-time measurements. Coda waves take a more circuitous path between the source and receiver

than ballistic waves, scattering off heterogeneities in the Earth10. Coda waves thus sample a broader

volume than direct, ballistic waves. Scattering reduces the sensitivity of coda waves to the original

seismic source, which increases their sensitivity near the receiver73.

If Earth material property changes, a travel-time difference accumulates in late coda waves, with

phase shifts dt increasing proportionally with phase lags t. Waves in the late coda are thus more sen-

sitive to small perturbations in velocity than ballistic sources. With the assumption that there is a

homogeneous velocity change in the sampling medium, the relative time delay in the coda, dt/t, is

related to the relative change in seismic velocity, dv/v, by dt/t = −dv/v. Recent work has shown

that this relation holds for many realistic scenarios of velocity perturbation182,184,298.

Poupinet et al. 193 measured seismic velocity variations near the Calaveras Fault, CA by com-

paring the relative delay of coda waves between doublet events, repeating earthquakes with similar

epicenters and mechanisms. The “doublet technique”, also called MovingWindow Cross Spectrum

(MWCS), has been used to monitor variations in seismic velocity in fault zones193,73 and volca-
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noes197,109. Using earthquakes as seismic sources for continuous monitoring is limited by the need

for repeated earthquakes, which only occur at major fault systems173, volcanoes234 and sites of fluid

injection22. Active sources can measure changes in crustal velocity with precision of 10−3 − 10−4

from travel-time measurements299,293,237. These methods have not seen wide adoption due to their

limited observation time (t < 1 year) and short source-receiver baseline (L ≤ 1− 2km).

Ambient seismic waves continuously sample the mechanical properties of the near-surface.

While Aki 6 hinted that information about the subsurface could be determined through the spa-

tial autocorrelation of the ambient field, it was not until laboratory measurements in the field of

acoustics282 and theoretical studies67,278 showed that the cross-correlation of a diffuse field yields

the elastodynamic Green’s function of the solid material. Campillo and Paul 43 and Shapiro and

Campillo 232 were the first to extract fundamental surface wave arrivals (Green’s functions) from the

cross-correlation of coda waves and ambient noise, respectively, recorded at pairs of seismometers.

In the real Earth, where ocean storms and waves16,158,104, atmospheric disturbances103 and cultural

noise158,71,200 generate the ambient field, ambient noise cross-correlation recovers a band-limited

approximation to the Green’s function between a pair of seismometers267,279.

Thanks to ambient noise seismology, seismometers are now considered as continuous “virtual

sources” and receivers, obviating the use of repeated earthquakes, explosive sources or piezoelectric

transducers. Ambient noise cross-correlations capture both direct waves and multiply scattered

waves. Similar to the coda of earthquakes, coda waves from ambient noise cross-correlation are

greatly sensitive to small perturbations in the medium of propagation242. Pacheco and Snieder 188

suggested that local perturbations in seismic velocity could be monitored through tracking of tem-

poral changes in the coda of ambient noise cross-correlations. Sens-Schönfelder andWegler 230 were

the first to apply “CodaWave Interferometry” to ambient noise cross-correlations to continuously

monitor the change in seismic velocity, dv/v, at Merapi volcano, Indonesia. They found a seasonal

change in dv/v due to precipitation.
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The workflow to extract dv/v from ambient noise is described in Figure1.1. First, the ambi-

ent seismic field is recorded at a pair of seismic stations, A and B. Seismic waveforms are then pre-

processed, cross-correlated, and stacked temporally. This process is repeated over a time period that

can spans minutes to years, depending on the application. Then, phase delays, dt/t, are measured

between each individual correlation function and a reference correlation, which allows one to con-

struct a time series of dv/v. This workflow is performed over all combinations of seismometers pairs

and station components (north-north, north-east, north-vertical, etc..). The average dv/v time-series

over all stations and components is often reported for a synoptic view of the velocity changes.

BA

⌦

(a)

(b)

(c)

(d)

(e)

Figure 1.1: dv/v workflow. (a) Record ambient seismic noise at pair of seismometers. (b) Pre‐process and cross‐correlate
ambient noise. (c) Phase delay between two (red and black) noise cross‐correlation functions. (d) Time delay, dt/t,
measurement. (e) dv/v time series near Parkfield, CA from Brenguier et al. 33 .
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dv/v has been widely used in recent years to study the dynamics of Earth’s crust in response to

earthquakes33,35,287,254, volcanic eruptions34,165,183,75 and ice sheet melt166. dv/v is known to vary

seasonally due to precipitation230,160,268,276, air temperature160,268,106, freeze-thaw of permafrost116,

and decennially due to climatic forcing140. Changes in seismic velocities are thus a signature of the

mechanical response of the Earth material to stresses. I will now show that dv/v is closely related to

volumetric strains.

3 Using nonlinear elasticity to turn dv/v into a strainmeter

Lab measurements have shown that uniaxial stress178 and saturation179 can change seismic velocity.

In low porosity rocks with high aspect ratio, penny-shaped cracks, such as granites, an increase in

saturation (a decrease in effective stress) increasesVp
179. In this case, when a fluid fills the cracks, the

effective compressibility of the rock increases more than the density, increasingVp. The opposite is

true for sedimentary rocks with rounded pores, where the change in seismic velocity scales linearly

with effective stress81. One proposed model for the velocity change in fluid-saturated sedimentary

rocks is that increasing pore pressure decreases the area of grain contacts and thus lowers effective

moduli, which in turns decreases seismic velocity53. This relationship between effective stress and

seismic velocity is especially useful when considering groundwater aquifers, which are composed of

sedimentary strata and highly fractured rock.

Laboratory observations of variations in seismic velocities can be modeled using nonlinear elastic

theory. Hughes and Kelly 111 derived the third-order equations for the velocities of elastic compres-

sion and shear waves under hydrostatic pressure p, given by,
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ρV2
p = λ + 2μ− p

3K
(6l+ 4m+ 7λ + 10μ) (1.1a)

ρV2
s = μ− p

3K
(3m− 1

2
n+ 3λ + 6μ) (1.1b)

where l,m, and n are Murnaghan’s third-order elastic constants171,K is the bulk modulus, ρ

is the density of rock, and λ and μ are the Lamé parameters or second-order elastic constants. The

third-order elastic constants for Earth materials have negative values and are 1-2 orders of magnitude

larger than the second-elastic constants, and do not correlate with physical properties, such as den-

sity, porosity, or strength290. Toupin and Bernstein 265 derived the relative change in compressional

and shear velocity with respect to a change hydrostatic pressure as,

ρ
∂V2

p

∂p
=

8n+ 10m+ 7λ + 10μ
λ + 2μ

(1.2a)

ρ
∂V2

s
∂p

=
4n+ 3m+ 3λ + 6μ

λ + 2μ
(1.2b)

From equation 1.2, I note that the slope ∂V2/∂p is related to a ratio of the third-order elastic

constants to the second-order elastic coefficients. This ratio is referred to as the acoustoelastic pa-

rameter βij in the literature
82,131,190,226.

For a uniaxial stress, there are five unique acoustoelastic constants, βij, depending on the direc-

tion of wave propagation (parallel or perpendicular to the applied stress) and direction of particle

motion82. E.g. β11 is the acoustoelastic coefficient for a compressional wave propagating parallel

to the applied stress, β12 is the acoustoelastic coefficient for a shear wave propagating parallel to the

applied stress, etc.. When measuring βij with coda waves, it is difficult to separate the individual

components of βij, as compressional and shear waves equipartition under multiple scattering
283.
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Experimentalists thus often report the ensemble averaged acoustoelastic coefficient, β =
⟨
aijβij

⟩
,

where
∑

aij = 1 and ⟨⟩ denotes an ensemble average138,190,290.

The one-dimensional stress-strain relationship containing nonlinear effects can be reformatted

with β as,

σ = M(ε+ βε2 + . . .) (1.3)

where σ is stress,M is the second- and third-order elastic modulus, given by 2 and 3 independent

components, respectively, for an isotropic material187, and ε is strain. In this case, β can be expressed

in terms of the Murnaghan moduli as,

β =
3
2
+

l+ 2m
λ + 2μ

(1.4)

Experimental values for β vary widely based on the materials but is in general a large negative val-

ues. Reported values for steel are around−100 111, concrete in the range of−101 to−102 226,138,236,190,301,

Barre granite in the range of−102 to−103 179, marble around−103 125, and Fountainbleu sand-

stone around−104 125. Under a nonlinear elastic rheology, the local sound velocity is given byOs-

trovsky and Johnson 187 as,

v =
√
ρ−1dσ/dε ≈ v0(1+ βε+ . . .), (1.5)

where v and v0 are the perturbed and unpertured velocities, respectively. The change in velocity

Δv
v = v−v0

v0 due to a hydrostatic stress, σkk, as a function of the volumetric strain, εkk, then becomes,

Δv
v

= βεkk. (1.6)

Recently, a number of authors have measured β values due to tidal strains using ambient noise
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cross-correlation.Mao et al. 153 found a value of β = −2 × 103 − 2 × 104 for tidal strains with

differing tidal periods at Piton de la Fournaise (PdF) volcano, La Réunion. Sens-Schönfelder and

Eulenfeld 229 found β = −1.6 × 104 for tidal strains in the Atacama desert. Takano et al. 255 found

β = −6.9× 104 for tidal strains at the foot of Mount Iwate, Japan.

4 dv/v turned into a measure of hydraulic head

Here, I attempt to determine the effect of an increase in groundwater level on seismic velocity using

poroelastic theory and nonlinear elastic theory. The constitutive relations for an ordinary isotropic,

linearly elastic solid are,

2Gεij = σij −
ν

1+ ν
σkkδij, (1.7)

where εij is the strain tensor, σij is the stress tensor, δij is the Kronecker delta,G is the shear modu-

lus, and ν is Poisson’s ratio. Poroelastic theory augments the linear elastic constitutive relation by

adding the contribution of pore pressure, p, and the change in fluid mass content per unit volume,

m. Following the results ofRice and Cleary 202 , the poroelastic constitutive relations are,

2Gεij = σij −
ν

1+ ν
σkkδij +

3(νu − ν)
B(1+ ν)(1+ νu)

pδij (1.8a)

m−m0 =
3ρ0(νu − ν)

2GB(1+ ν)(1+ νu)

(
σkk +

3
B
p
)

(1.8b)

where νu is the “undrained” Poisson’s ratio, B is Skempton’s coefficient,m − m0 is the change

in fluid mass content per unit volume, ρ0 is the density of the pore fluid and p is the pore fluid

pressure. I now consider the effect of precipitation over a wide area on groundwater levels under

undrained conditions, where there is no fluid flow in response to stress. I argue later in Chapter 4

that considering undrained conditions, wherem − m0 = 0, and neglecting the drained response
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is reasonable. I followRoeloffs 211 to derive a relation between hydraulic head Δh, strains, and dv/v.

I start with the definition of the Skempton’s coefficient, which relates a change pore pressure, p, to

isotropic or volumetric stress σkk 238,

p =
−Bσkk
3

. (1.9)

Using equation 1.7, we can recast equation 1.9 in terms of the pore pressure due to volumetric

strain, εkk, as,

p = −2GB
3

1+ νu
1− 2νu

εkk, (1.10)

where I note that a change of pore pressure, Δp, for a given change in groundwater level Δh,is

given by

Δp = ρ0gΔh (1.11)

where g is the gravitational acceleration at the surface. Substituting equation 1.11 into equation

1.10 shows that a change in groundwater level is linearly related to the change in volumetric strain,

εkk, as,

Δh = −2GB
3ρ0g

1+ νu
1− 2νu

εkk. (1.12)

Equation 1.12 is similar to the one found byRiley 206 for relating the compaction of an aquifer

due to the instantaneous lowering of hydraulic head. The coefficient of proportionality between Δh

and εkk in the case of compaction is given by the skeletal specific storage39 Ssk, where,

Ssk =
3ρ0g(1− 2ν)
2G(1+ ν)

. (1.13)
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Substituting equation 1.6 into equation 1.12 then gives a relation for the change in seismic wave

speed as a function of change in groundwater level,

Δv
v

= −
3ρ0g
2GB

1− 2νu
1+ νu

βΔh (1.14)

and in its reduced form,

Δv
v

= −Sskβ
B

Δh (1.15)

5 Monitoring Attenuation

Thus far, I have addressed the phase-sensitivity of seismic waves to subsurface perturbations. The

amplitudes of seismic waves are also sensitive to the anelastic regime. Seismic wave amplitudes decay

at a faster rate than what is predicted by geometric spreading - a process we call attenuation. Atten-

uation takes two forms: scattering and intrinsic absorption. Scattering is an elastic process in which

small heterogeneities generate incoherent phases8. Scattering redistributes, rather than removes, en-

ergy. Intrinsic absorption is an anelastic process in which kinetic energy is converted into heat220.

Attenuation can be measured on the amplitude of distinct seismic wave amplitudes or on the decay

of coda waves, the later of which is called codaQ orQ−1
c

7,10.

CodaQmeasurements were popular in the 1980’s and 1990’s, when it was thought that temporal

changes inQ−1
c could be used to predict earthquakes9. Chouet 50 made the first measurements of

codaQ in central California, where he found an increase inQ−1
c over the period of a year but could

not find a satisfactory theoretical explanation for the changes. Fehler et al. 85 observed an increase

in codaQ prior to the 1981 eruption of Mount St. Helens, suggesting the role of fluids in codaQ

variations. Overall, it is expected that codaQmay vary by as much as 50%121,220.

Ambient noise cross-correlations also carry the signature of codaQ. Sens-Schönfelder andWe-
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gler 230 andWegler and Sens-Schönfelder 286 measured reasonable values of codaQ in ambient-

noise cross correlation and single-station correlations, respectively. Hirose et al. 107 calculated the

mean free path length using the envelope decay of ambient noise correlation coda windows. Soergel

et al. 244 measured codaQ on inter-station cross correlations at the regional scale and found spatial

variations that were consistent with tectonic structure. Soergel et al. 244 needed at least 200 days of

stacking for sufficient stability in the measurements. van Dinther et al. 269 observed fivefold varia-

tions inQ−1
c across the North Anatolian Fault using ambient noise correlations.

6 Synopsis

Now that we have the foundations to understand the seismic measurements and their relation to

hydrological conditions, we turn to practical application in the California. In the second chapter,

I present results frommonitoring groundwater fluctuations in the San Gabriel Valley, CA due to

drought from 2000 - 201858. In the third chapter, I develop a framework for accelerating ambient

noise cross-correlations using the computing language Julia and high-performance computing re-

sources59. In the fourth chapter, I develop a framework for using a single seismometer to monitor

groundwater level changes. I compare my results to groundwater well measurements, precipita-

tion measurements, and gravity measurements from the Gravity Recovery and Climate Experiment

(GRACE)209. In the fifth chapter, I apply the methods developed in the third and fourth chapters

to monitor groundwater levels across the state of California over the last two decades. In the final

chapter, I show the potential of using internet-of-things (IoT) devices for seismology at the edge.
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2
Tracking Groundwater Levels Using the

Ambient Seismic Field

Too many sins, I’m runnin’ out

Somebody send me a well for the drought

Kendrick Lamar Duckworth

14



This study58 presents the perturbations in seismic velocity (dv/v) in the San Gabriel Valley (SGV),

Eastern Los Angeles County, California. The SGV contains three unconfined, urban aquifers: the

San Gabriel, the Puente, and the Raymond Basins. The east-northeast-striking Raymond Fault acts

as a barrier to flow between the Raymond and San Gabriel Basins, while the San Gabriel and Puente

Basins are hydraulically connected41,295,151. Water-bearing sediments reach a maximum thickness of

1,200m in the central part of the SGV41. The SGV Basin is recharged by a combination of infiltra-

tion from rainfall, runoff from the San Gabriel Mountains, stormwater capture, and imported water

from the State Water Project.

Figure 2.1: Groundwater level change in San Gabriel Valley during most recent drought (Fall 2012 ‐ Fall 2016). Seismic
stations are shown as blue triangles, and groundwater wells are shown as yellow circles. Black circle indicates the
position of the Baldwin Park Key well.

We consider changes in SGV groundwater in the period Jan 2000 - Jul 2017. This period is no-

table for having three major droughts in southern California (2002-2004, 2007-2009, and 2012-

2016)42. During droughts, groundwater supplies over 40% of water demand in the SGV151. By the
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end of the 2012-2016 drought, groundwater levels dropped 18m in the SGV in the Baldwin Park

KeyWell (Figure 2.1), reaching all-time low levels in Oct 2016. Even with above average precipita-

tion in the winter of 2016-2017, groundwater levels only recovered 1.7m in the SGV basin due to

uptake by drought-parched soil151.

1 Data andMethods

Ambient Seismic Cross-Correlation

We use continuous data from broadband vertical component seismometers in the California In-

tegrated Seismic Network (CI) from Jan 2000 - Jul 2017 (Fig 2.1). All raw waveforms are down-

sampled to 20Hz, demeaned, and detrended. Hourly windows of raw data with maximum am-

plitude greater than ten times the standard deviation of the daily trace are discarded. We apply

one-bit normalization and whiten in the frequency domain from 0.05 to 4Hz21,140. Daily time

series are segmented into 1-hour windows with 30 minutes of overlap between successive windows

and cross-correlated using the MSNoise package139. Noise cross-correlation functions (NCFs) are

computed for all station pairs in all available date ranges. Instrument corrections are applied after

cross-correlating. A daily NCF is formed by stacking all hourly NCFs from each day.

Daily changes in seismic velocity are computed using the MovingWindow Cross-Spectrum

(MWCS) technique193,56. We compute time shifts, dt, in the coda of daily NCFs relative to a ref-

erence NCF, the stack of all NCFs for each station pair, in the 0.5 - 2Hz frequency band. We apply

a 30 day running mean to the NCFs to improve the stability of the MWCS analysis. Time shifts dt

and coherency c between the reference and daily NCF are calculated beginning after the 0.5 km/s

arrival in the coda in 10 swindows, shifted by 20% of the window length. dtmeasurements with

time shift dt ≤ 0.2 s in each window and coherency c ≥ 0.5 are included. A daily time shift dt/t

is measured by regressing time shifts dt from each window in the causal and acausal part of the coda.
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Assuming that there is linear relation between relative time lags and that the velocity change is ho-

mogeneous throughout the sampling medium, the daily velocity variation is just−dt/t = dv/v.

Figure 2.2: Observed dv/v stacked over all station pairs (black) with modeled dv/v due to thermo‐elastic strain (dashed)
removed compared with groundwater change (blue) in the Baldwin Park Key Well. Grey bars indicate lowest historical
water levels of the Baldwin Park Key Well. Blue patches indicate times of drought.

dv/v Regionalization

Wemap dv/v spatially in 1 km x 1 km grid cells using the regionalization method of Brenguier

et al. 34 . This simple inversion scheme approximates the scattering sensitivity of each station pair

as an ellipse. We set dv/v in all grid cells within 3 km of the straight line path between each station

pair as the difference in dv/v between the starting and end date of the period of interest. We then

average all grid cells over all the station ellipses. A gaussian smoothing function has been applied to

the dv/vmaps in Fig 2.3 and 2.4. We did not use the sensitivity kernels ofObermann et al. 182 that

assume homogeneous diffuse properties, which are unlikely to be satisfied in resonating sedimentary

basins.

1.1 Water Storage from dv/v.

We calculate the change in groundwater storage dVw in each grid cell in the SGV basin from dv/v

using a modified version of the recharge equation,
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dVw = Sy AΔdv/v β∗ (2.1)

where Sy is the specific yield, A is the area of a grid cell in the regionalization of dv/v, Δdv/v is

the change in seismic velocity between two dates, and β∗ is the ratio of a unit change in hydraulic

head, Δh, to a unit change in Δdv/v
88. The product Δdv/v β∗ = Δh gives the average change in hy-

draulic head in a grid cell. Sy varies from 0.03 to 0.24 across the SGV, with averages of 0.14, 0.08

and 0.09 in the central, eastern, and western parts of the SGV, respectively41. We take Sy = 0.12 as

a representative, average value for the entire SGV basin. Assuming that the inflation of the aquifer

was purely elastic130, we use the 2005 rain event (Jan 1 - Jun 1 2005) to calibrate β∗ for the SGV.

A 16.8m increase in groundwater level in the KeyWell and a -0.00125 (−0.125%) change in dv/v

in the SGV basin gives a value of β∗ = −13280m/(m/s
m/s). We find a similar negative value of

β∗ = −10900m/(m/s
m/s) using the dv/v and groundwater level changes found by Lecocq et al.

140 .

To estimate a volume change within the SGV basin over the 2012-2016 drought, we integrate dVw

over all grid cells.

2 Results andDiscussion

The dv/v variations we measure at 0.5-2.0Hz, which is sensitive to the upper 1 km of the basin,

are the most promising for groundwater monitoring at basin scale182. The change in groundwater

level in the Baldwin Park KeyWell explains most of the variance in the evolution of dv/v in the SGV.

We observe three distinct functional forms in our dv/vmeasurements : 1) seasonal periodicity, 2)

impulsive events, and 3) multi-year linear trends (Figure 2.2).

We use a thermo-elastic model268 to remove seasonal dv/v due to surface temperature variations

(Fig. 2.2). We find that seasonal thermo-elastic strains induce perturbations in wavespeed of about

0.03%, much lower than the hydrological effects that perturb elastic wavespeeds that are about
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0.15%. The seasonal residual in dv/vwe measure is thus a component of the seasonal recharge in

groundwater within the SGV basin117.

Figure 2.3: Regionalization of dv/v changes Jan 2005 ‐ Jun 2005 following large precipitation event in the SGV. GPS
stations (red = vertical, black = horizontal) uplift and move away from center of aquifer. The dashed black lines indicate
extent of ray coverage. Scaling of dv/v and groundwater level is from 2005 rain event.

At the end of 2004, groundwater levels in the SGV were at an all-time low in the Baldwin Park

KeyWell since measurements began in 1932. In contrast, the winter of 2004-2005 recorded the

largest rainfall in a 100-year period in Los Angeles with 1m of total precipitation. Water levels in the

Baldwin Park KeyWell increased by over 16m in a span of five months. GPS stations recorded more

than 40mm of uplift in the central part of the SGV130,118. We find that dv/v decreased by 0.15%

in the same time frame. This impulsive drop in dv/v is similar in amplitude to that seen after nearby

earthquakes33,287. The largest decrease in dv/vwas in the center of the SGV (Fig. 2.3), where the

basin is deepest295, as were the largest deformations recorded with InSAR130. There is no statisti-

cally significant phase lag between the groundwater levels and and dv/v response, suggesting a purely

elastic response of the aquifer.
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Figure 2.4: dv/v and GPS measurements after the 2012‐2016 drought. Regionalization of dv/v changes (Jan 2012‐ Jan
2017) during California’s worst drought. GPS stations move toward center of aquifer. Symbols are same as in Fig. 2.3.

During the drought of 2012-2016, groundwater levels declined in the SGV at a rate of 450mm/yr,

which is one of the highest rates seen globally272. This multi-year drawdown, during a period of low

precipitation259, was the dominant process in the increases in dv/vwe measured in the SGV. The

largest increase in dv/v during the drought occurred at two stations (RIO,RUS) located within the

basin and atop the thickest part of the aquifer41. Over the period Jan 2012- Jan 2017, when addi-

tional well data is available throughout the SGV, we find spatial correlation between the change in

dv/v and spatial and temporal patterns of groundwater change. The strongest increase in dv/v oc-

curs in the south of the SGV (Fig. 2.4). A small decrease in dv/v in the Raymond Basin over the

same time frame suggests that the SGV and Raymond basins are hydraulically separated41,118. GPS

stations during the same time period measured a contraction of the ground surface that may result

from a elastic response of the basin.

The strong temporal correlation between groundwater levels in the Baldwin Park KeyWell and
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dv/v (Fig. 2.2) and spatial agreement between GPS displacements and well levels at key periods of

time provide us confidence to map the change in groundwater level. We use the instantaneous elas-

tic response of the 2005 rainfall event to calibrate the conversion between dv/v and groundwater

level. Applying this calibration factor to the regionalization of dv/v from Jan 2012 - Jan 2017 yields

a water storage loss of 0.48 km3. This matches well with the additional 0.45 - 0.5 km3 of water that

was pumped by from the main SGV Basin during the drought to meet water demand151.

Our results imply that the change in seismic velocity, dv/v, has tremendous potential to monitor

groundwater fluctuations in basins of moderate-size aquifers. We find an inverse and linear scaling

between dv/v and groundwater in the San Gabriel Valley. Our analysis is able to provide the wa-

ter volume change, at much higher spatial resolution than GRACE data. It also the capabilities to

provide direct and continuous monitoring of the spatial variations in ground water levels, comple-

menting monitoring efforts from groundwater wells and GPS inversions of subsidence.

21



3
Ambient Seismic Noise Cross-Correlation

on the CPU and GPU in Julia

People who like this sort of thing will find this the sort of thing they like.

Charles Farrar Browne
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1 Introduction

Noise correlation functions (NCFs), generated from the cross-correlation of the ambient seismic

field recorded simultaneously at a pair of seismic stations, recover information about Earth struc-

ture at spatial scales ranging from the near surface (meters) to the lowermost mantle (thousands

of kilometers)233,145,294,230,181,199. When averaged over long periods of time, NCFs converge to

band-limited approximations of the elastodynamic Green’s function between the pair of receiver

stations284,68,241,232,218. With the wide range of length and time scales involved in such geophysi-

cal studies, computing NCFs can be a data-intensive technique, utilizing dense, high sample-rate

deployments (High/Large N) for near surface study145 or multi-year to permanent deployments

lasting up to decades (High/Large T) for long termmonitoring140.

In the last two decades, increases in computing power have allowed ambient noise processing to

become practical. While the total global seismic data stored by Incorporated Research Institutions

for Seismology (IRIS), the leading global manager and distributor of seismic data, is 0.66 PB to-

tal (as of July 1, 2020), Distributed Acoustic Sensing (DAS), which re-purposes fiber optic cables

as seismometers, will soon be generating PetaBytes of seismic data a year5. Due to the increasing

availability of complex and large (> 1 TB) seismic data sets, research in ambient noise seismology

requires high performance software to compute NCFs.

Seismology software has been written in a number of languages, including C/Fortran (SAC -

Goldstein et al. 94), Python (ObsPy - Beyreuther et al. 26), MATLAB (GISMO - Celso et al. 46), R

(RSeis - Lees 142), and Unix (Computer Programs in Seismology -Herrmann 102). Software suites

for computing NCFs have been written in Python (Lecocq et al. 139 ,Goutorbe et al. 96 , Jiang and De-

nolle 120), C++/CUDA (Fichtner et al. 86) and UNIX (Herrmann 102), among unpublished codes

written in other languages. The ideal computing language for ambient noise seismology would al-

low researchers to write high-level, performant code that scales from laptop to cluster. Currently,
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the choice of language dictates needs; compiled languages (C, Fortran, Shell) allow for fast execu-

tion time at the cost of slow development, while vectorized languages (Python, Matlab, R) allow

for rapid development and ease of use at the cost of slow execution time. The benefits/trade-offs of

static vs dynamic languages for use in ambient noise seismology are emblematic of the two language

problem: prototyping is best done in a high-level language, while implementation should be done in

a low-level language86.

To solve the two-language problem in ambient noise seismology, we developed SeisNoise.jl, a

package for ambient noise cross-correlation on the CPU and GPUwritten entirely in the comput-

ing language Julia. Julia is a dynamically typed, high-level language that compiles at run time into

low-level machine code27. In Julia for loops execute as fast as C or Fortran, yet code is succinct and

readable like in vectorized languages such as Python or MATLAB. Julia is the only high-level dy-

namic language to achieve Petaflop performance262. SeisNoise.jl was designed to follow these prin-

ciples: it should be open source, use only a single computing language, be easy to use in a command-

line REPL (read-eval-print loop), scripting, and high-performance computing environments, use

intuitive syntax, and be both fast and memory efficient. Here, we describe the structure and exam-

ple use cases of SeisNoise.jl. To install SeisNoise.jl from the Julia REPL, type:

� �
j u l i a > ]

( v 1 .5 ) p k g > a d d S e i s N o i s e

j u l i a > u s i n g S e i s N o i s e� �
Listing 3.1: Installation of SeisNoise.jl using the Julia package manager.

SeisNoise.jl’s source code, documentation and testing are available on Github at

https://github.com/tclements/SeisNoise.jl.
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2 SeisNoise.jl Structure andWorkflow

While there are a wide range of strategies to recover NCFs21,243,227,87, typical ambient noise cross-

correlation workflows usually involve three steps: pre-processing, correlation, and post-processing.

The goal of pre-processing is to make raw seismic data amenable for cross-correlation, which usu-

ally entails dividing day-long segments of ambient noise into shorter (sometimes overlapping) time

windows227 and down-weighting large amplitude signals, such as earthquakes or instrument irreg-

ularities21. The correlation step is largely computational. Cross-correlation is often performed in

the frequency domain due to the speed and efficiency of the Fast Fourier Transform (fft). The cross-

correlation for a single time window is calculated in the frequency domain (ω) as the cross spectrum,

CAB(ω) = U∗
A(ω)UB(ω), (3.1)

whereUA(ω) andUB(ω) are the Fourier transforms of the seismograms ua(t) and ub(t) at seis-

mometers A and B, respectively, and ∗ denotes the complex conjugate. The resulting time-domain

cross-correlation, cAB(τ), is the inverse Fourier transform (F−1) of the frequency-domain cross-

spectrum,

cAB(τ) = F−1 (CAB(ω)) , (3.2)

where τ denotes the cross-correlation lag time that is a real number (positive and negative).

The goal of post-processing is to generate one or more NCFs, nAB(τ), for each station pair AB,

where

nAB(τ) = ⟨cAB1(τ), cAB2(τ), . . . , cABn(τ)⟩ (3.3)
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and ⟨⟩ represents stacking across distinct time windows t = 1, 2, . . . , n.

Figure 3.1: Data flow through objects in SeisNoise.jl. a) Ambient noise data read into SeisIO SeisData object for prepro‐
cessing and instrument response removal b) Windowed ambient noise data processed in a RawData object c) Fourier
transforms (shown as spectrograms) stored in a FFTData object d) Cross‐correlations stored in a CorrData object.

SeisNoise.jl provides three custom data structures for computing NCFs: RawData stores am-

bient seismic noise data in short, overlapping time windows, FFTData stores Fourier transforms

of these time windows, andCorrData stores the corresponding NCFs, as shown in Figure 3.1. Be-

cause Julia uses column-major ordering, each ambient noise time window in SeisNoise.jl is stored as

a column in a 2D array. The start time of each ambient noise window is stored as the number of sec-

onds since 1970 (UNIX time) and is accessible via the .t field for all three types of structure in Seis-

Noise.jl. Ambient noise data is accessible via the .x, .fft, and .corr fields forRawData, FFTData,

andCorrData structures, respectively. In addition to data, SeisNoise.jl structures hold numerous

types of metadata, including the start time of each time window, station name and geographic lo-

cation, sampling rate, instrument response, and processing notes (e.g. minimum and maximum

frequencies of the data after filtering, time and spectral normalization information, maximum lag

time in correlation, etc..). We introduce a general workflow for NCF processing using SeisNoise.jl

structures and functions in the following sections.
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2.1 Cross-Correlation Pre-Processing

SeisNoise.jl relies upon SeisIO.jl for reading of ambient noise data and initial data handling127.

Seismic data (SEED, SAC, SEG Y, Nodal, etc...) can be read locally using the SeisIO.jl read_data

function or downloaded from IRIS or FDSN data centers using the get_data function. SeisIO.jl

stores raw seismic data and station meta-data in either SeisChannel (single-channel data) or Seis-

Data (multichannel data) structures. SeisIO.jl provides methods for merging data, filling or remov-

ing time gaps, downsampling, detrending, tapering, removing instrument responses, and syncing

channel start/end times21.

Cross-correlating short time windows, or overlapping time windows, has been shown to improve

signal-to-noise (SNR) ratio in NCFs194,227. TheRawData structure in SeisNoise.jl allows one to

operate on many short, overlapping windows of ambient noise at once. RawData structure take

either SeisData or SeisChannel as input. For example, a day-long SeisData segmented into 30-

minute windows with 75% overlap will yield aRawData structureRwith 187 30-minute time

windows. TheRawData structure facilitates the second phase of pre-processing: preparation of

time windows for cross-correlation. SeisNoise.jl provides functions for common time-window pre-

processing steps, including demeaning, detrending, tapering, filtering (lowpass, highpass, bandpass

and bandstop), time-domain normalizing (e.g. one-bit, root mean square clipping, running-mean

normalization), and spectral-whitening21. SeisNoise.jl processing functions are applied to Seis-

Noise.jl structures, which then call low-level kernels on data28. For example, calling detrend!(R)

applies a detrending kernel to each time window inR.x. The advantage of this paradigm is concise

production code: detrending requires a single line of code, rather than a for loop over each window.

In our opinion, this concise syntax allows users to focus on workflow rather than on computational

bookkeeping.
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2.2 Cross-Correlation Processing

We proceed with cross-correlation in the frequency domain. The first step to cross-correlation is

taking the discrete Fourier transform of windowed ambient noise data. Since ambient noise data is

real valued, SeisNoise.jl computes discrete Fourier transforms using the real fast Fourier transform

(rfft), which offer a 2-3x speed over a regular fft. The rfft function computes the real Fourier trans-

form of the data in aRawData object and returns a FFTData object. The FFTData structure in

SeisNoise.jl stores ambient noise spectra (U(ω)) and allows users to apply spectral operations, such

as whitening, in-place before cross-correlating.

Computing a cross-correlation in the frequency domain necessitates an element-wise multipli-

cation of two noise spectra and an inverse Fourier transform. The SeisNoise.jl correlate function

accepts two FFTData structures, computes the Fourier-domain cross-correlation between com-

mon time-windows, and returns a two-sided time-domain cross-correlation, stored in aCorrData

structure. TheCorrData structure provides additional metadata, such as the maximum positive

and negative cross-correlation lag time and distance, azimuth, and back azimuth between the two

stations.

2.3 Post-Processing

The goal of post-processing is to convert raw NCFs into a more amenable format for scientific in-

put. This is usually achieved through ”stacking”, or adding, NCFs over time, which increases the

signal-to-noise ratio21. The number of NCFs generated in post-processing varies with the geophysi-

cal application. Time-independent studies, such as tomography233 or virtual earthquakes66, require

a singleNCF, while time-dependent applications, such as noise-based monitoring using coda-wave

interferometry181,36, requiremanyNCFs. Stacking in SeisNoise.jl is possible for arbitrary time pe-

riods fromminutes to years, as specified by the user. SeisNoise.jl has multiple routines for stacking
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correlations including the linear, phase-weighted224, robust189, and autocovariance filter stacks174.

Additionally, SeisNoise.jl has routines for rotating NCFs in arbitrary reference frames to a vertical-

radial-transverse reference frame144.

After stacking or rotating,CorrData structures (along withRawData and FFTData) can be

saved to and loaded from disk using the JLD2.jl package, a pure Julia HDF5-compatible file format.

When saved to disk,CorrData are saved by component, e.g. ”ZZ” or ”EN”, then by start date in

”YYYY-MM-DD” form.

3 SeisNoise.jl Parallelization

Ambient noise cross-correlation lends itself to parallel processing. For a dataset withN stations,

pre-processing and computation of Fourier transforms scale withN in time, while the computation

of cross-correlation and post-processing scales withN2 in time. Thus, most computational time in

ambient noise cross-correlation is spent cross-correlating and post-processing when working with

a reasonably large number of stations. Cross-correlations across distinct time windows (e.g Day 1

and Day 2) are independent, while cross-correlations within a single time window (e.g Day 1) are

dependent on theN Fourier transforms,U1(ω), . . . ,UN(ω). Computing cross-correlations across

distinct time windows is thus “embarrassingly parallel”, while cross-correlating within a single time-

window requires either movement of individualU(ω)’s among processing units, i.e. shared-memory

parallelism, or computation-level parallelism, such as multi-threaded matrix multiplication101.

Numerous options exist for parallelizing ambient noise cross-correlation. Previous authors

parallelized cross-correlation using the MapReduce framework via Hadoop3, distributed mem-

ory parallelism via the Message Passage Interface (MPI)48,120, job-based parallelism via a Struc-

tured Query Language (SQL) database139, shared memory parallelism via OpenMulti-Processing

(OpenMP)86, and Graphical Processing Unit (GPU) parallelism via Compute Unified Device Ar-
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chitecture (CUDA)86. We use two types of parallelism in SeisNoise.jl: distributed-memory paral-

lelism via the Distributed.jl Julia module and GPU-parallelism via the JuliaGPU suite.

Our CPU-based parallelism is simple. We apply distributed memory parallelism across cross-

correlation time windows using the parallel map function, pmap, fromDistributed.jl. pmap takes

a functional input and “maps” it in parallel on a set of variable inputs. Unlike MPI-style paralleliza-

tion, which is also available in Julia, pmap handles all parallelization, data distribution, and load

balancing for the user64. Cross-correlating an entire ambient noise data set using a pmap-based

workflow requires only defining a map function that computes NCFs between all station-pairs for

a single day, a list of day-long seismic trace file paths as inputs, and a list of parameters for cross-

correlations, such as the ambient noise window length, overlap between windows, and maximum

lag-time in the cross-correlation to save. We believe the parallel map framework is a particularly sim-

ple to implement cross-correlation parallelism.

3.1 GPU Parallelization

GPUs are highly parallelized processors designed for high throughput and computationally inten-

sive applications. GPUs are widely used to accelerate data-intensive seismic workloads, such as stack-

ing300, earthquake detection161,19, reverse time migration2, or wave propagation simulations132.

Order of magnitude decreases in processing time for ambient noise cross-correlation are possible us-

ing Nvidia’s CUDA platform for writing GPU code86,270,19. The trade-offs associated with writing

GPU code in CUDAC or C++ are the difficulty and time to write CUDA code, along with a lack

of code reuseability, i.e. code for the CPU cannot be reused on the GPU. This is not the case when

using Julia.

Julia provides a high-level interface to the CUDAGPU programming toolkit through the CUDA.jl

package25. CUDA.jl provides an GPU-based array type for transferring and storing data on the

GPU and access to CUDA kernels, such as matrix multiplication and Fourier transforms. Data in
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SeisNoise structures (R.x, F.fft, andC.corr fields, forRawData, FFTData, andCorrData, re-

spectively) can move between anArray on the CPU to aCuArray on the GPU using the gpu and

cpu functions and the Julia pipe function, |>, as shown below.

� �
# c r e a t e r a w d a t a a n d s e n d t o GPU

R = R a w D a t a ( S , c c _ l e n , c c _ s t e p ) | > g p u

# s e n d d a t a b a c k t o t h e CPU

R = R | > c p u� �
Listing 3.2: Sending data to and from the GPU using Julia pipes.

In most cases, SeisNoise.jl uses the same code to process data on the CPU and GPU. For example,

processing functions in SeisNoise.jl, such as detrend, taper and correlate, are written at a high

level of abstraction, such that they can accept a CPUArray or a GPUCuArraywith no modifi-

cation. This leads to, in our opinion, GPU code that is comprehensible for users with little GPU-

programming experience.

There is a variable time cost, on the order of 1-100 ms, which scales linearly with data size and

depends on GPUmodel, to transfer data from the CPU to GPU, or vice-versa. The GPU-based

processing strategy for SeisNoise.jl is thus to keep data on the GPU for as long as possible. This

entails transferringRawData to the GPU, then doing all pre-processing withRawData on the

GPU, computing Fourier Transforms and spectral whitening on the GPU, and finally computing

cross-correlations and stacking on the GPU. Stacked cross-correlations must be transferred back

to the CPU before saving to disk. A GPU-based cross-correlation code in SeisNoise.jl, thus looks

almost identical to a CPU-based single-core code, with the exception of added |> gpu and |> cpu

syntax for memory transfer to and from the GPU. See section 4.2 for an example of SeisNoise.jl

31



GPU cross-correlation. We detail the speedup of GPU vs. CPU processing in the next section.

3.2 Performance Benchmark

We benchmark SeisNoise.jl’s single CPU core, many CPU cores, and GPU performance using a

dataset similar to Fichtner et al. 86 . We selected 188 vertical component LHZ channels with 1 Hz

sampling rate, operating from January 1, 2019 to January 1, 2020, with up-time greater than 98%

(more than 360 days) for the entire year. The entire dataset of LHZ waveforms is 23 GBs in size.

For the first benchmark, we test SeisNoise.jl’s processing performance on the CPU and GPU

against our previous ambient noise cross-correlation code written in Python using Numpy and

Scipy58. We cross-correlate one year of data for a single LHZ-LHZ station pair using a single core

on an Intel i7-8700K CPUwith 32 GB RAM and a Nvidia GeForce GTX 1070 Ti GPUwith 8

GB VRAM (video RAM). The code for each test is the same - we read the data using SeisIO.jl, then

convert immediately toRawDatawith a window length of 32,768 (215 to maximize fft efficiency)

seconds and an overlap of 6,000 seconds between windows. We apply a simple pre-processing

scheme of detrending, tapering, highpass filtering above 0.001 Hz, and time-domain normalizing

theRawDatawith one-bit21. The data is then cross-correlated in the frequency domain, inverse

Fourier transformed, cut to a maximum lag time of±12, 000 seconds and stacked (instrument re-

sponse was not removed in this benchmark).
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Figure 3.2: Median run times for common ambient‐noise processing steps using 1 year of LHZ cross‐correlations be‐
tween stations BK.CMB.00.LHZ and US.WVOR.00.LHZ. Times for Julia/GPU, Julia/CPU and Python/GPU are colored
white, grey and black, respectively. Median run time for conversion from SeisData to RawData in Python is not included.

The total time for cross-correlation with Julia/GPU is 0.503 s, Julia/CPU 1.7 s, and Python/CPU

2.7 s, giving a 3.5x speedup for Julia GPU vs CPU, and 1.5x speedup for Julia vs Python. Bench-

marking results for each step in the cross-correlation workflow is given in Figure 3.2. Interestingly,

the most time-intensive processing for a single station-pair is detrending and filtering. Julia/GPU

performs better than Julia/CPU and Python/CPU on detrending and cross-correlation, as these

operation involve matrix multiplications. Even though our test GPU has 18x theoretical floating

point performance than the test CPU, we only achieve a 3.5x speedup using the GPU.We ascribe

the CPU’s relatively higher performance to 1) non-negligible time taken to transfer data to and from

the GPU, 2) all SeisIO.jl pre-processing is on the CPU and 3) our non-optimal implementation of

Butterworth filtering on the GPU.

To test many-core performance, we cross-correlate all station-pairs in the year-long LHZ dataset
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(17,578 pairs in total). We apply the same processing steps as above, with the addition of instrument

response removal, following Fichtner et al. 86 . As a baseline, a stacked NCF for each station pair

in the dataset on a single core of the Intel i7-8700K took just under 1 hour and 50 minutes, while

our GPU implementation took 28 minutes on the Nvidia GTX 1070 Ti. The cross-correlations

generated during this test are shown in Figure 3.4. This compares to 163 days and 16 hours reported

to compute a similar dataset on the CPU and GPU, respectively, by Fichtner et al. 86 . We tested the

SeisNoise.jl’s many core CPU performance using an Intel Xeon Platinum 8000 with 48 cores and

192 GB RAM, which took 12 minutes. This shows that SeisNoise.jl can take on relatively heavy

computational workloads using only desktop resources.

4 Examples

4.1 Prototyping in the REPL

Following the easy to use SAC94, Obspy26 and SeisIO.jl127 suites for seismic data processing, Seis-

Noise.jl is designed for rapid prototyping in a command-line REPL (read-eval-print loop) en-

vironment. Below is aminimal working example of SeisNoise.jl meant to be used in a REPL.

In this example, SeisIO.jl is used to download one day of data from channels CI.SDD.BHZ and

CI.PER.BHZ in the Southern California Seismic Network. The complete cross-correlation process

is then implemented in about 10 lines of code using SeisNoise.jl functions. The Julia dot notation

(e.g. detrend!.(R)) for broadcasting function calls to each element of an array is used to eliminate

duplicated processing steps for both stations or the use of a for loop.

� �
u s i n g S e i s N o i s e , S e i s I O

# p a r a m e t e r s

f s = 4 0 . # s a m p l i n g f r e q u e n c y i n H z
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f r e q m i n , f r e q m a x = 0 .1 , 0 .3 # m i n a n d m a x f r e q i n H z

c c _ s t e p , c c _ l e n = 4 5 0 , 1 8 0 0 # c o r r s t e p / l e n g t h i n S

m a x l a g = 6 0 . # m a x i m u m l a g t i m e i n c o r r e l a t i o n

s m o o t h i n g _ h a l f _ w i n = 1 2

# d o w n l o a d d a t a

S = g e t _ d a t a ( ” FDSN ” , ” C I . SDD . . BHZ , C I . PER . . BHZ , ” , s r c = ” SCEDC ” ,

s = ” 2 0 1 9 - 0 2 - 0 3 ” , t = ” 2 0 1 9 - 0 2 - 0 4 ” )

# p r e - p r o c e s s d a t a

p r o c e s s _ r a w ! ( S , f s )

R = R a w D a t a . ( [ S [ 1 ] , S [ 2 ] ] , c c _ l e n , c c _ s t e p )

d e t r e n d ! . ( R )

t a p e r ! . ( R )

b a n d p a s s ! . ( R , f r e q m i n , f r e q m a x , z e r o p h a s e = t r u e )

# c o m p u t e c o r r e l a t i o n

FFT = r f f t . ( R ) # F o u r i e r t r a n s f o r m

w h i t e n ! . ( FFT , f r e q m i n , f r e q m a x ) # w h i t e n [ f m i n , f m a x ] H z

C = c o r r e l a t e ( FFT [ 1 ] , FFT [ 2 ] , m a x l a g ) # c r o s s - c o r r e l a t e

b a n d p a s s ! ( C , f r e q m i n , f r e q m a x ) # f i l t e r d a t a

a b s _ m a x ! ( C )

# p l o t

c o r r p l o t ( C ) # p l o t� �
Listing 3.3: Cross‐correlation workflow testing in the REPL
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Figure 3.3: Example output of SeisNoise.jl code example. (Top) 30‐minute cross‐correlations from 2019/2/3 between
stations CI.SDD and CI.PER, filtered between 0.1‐0.2 Hz. (Below) Stacked daily correlation for CI.SDD ‐ CI.PER.

This examples produces Figure 3.3. Functions in Julia are just-in-time (JIT) compiled the first

time they are run. Consequently, the example above will be slower the first time it is run than on

subsequent runs.

4.2 Interactive GPU Prototyping

While most large-scale GPU applications are run on large clusters, researchers often test and bench-

mark GPU codes using local resources. One benefit to GPU computing in Julia is the ability to do

interactive programming through the REPL. This avoids the test-recompile-test procedure required

by CUDAC. Users can inspect data stored in memory on the GPU using functions from Julia’s

Base library such asmin, abs, or sqrt. This allows for rapid data iteration and testing. For example,
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here is a complete cross-correlation routine on the GPU that can be tested in the REPL, where S1

and S2 are SeisData objects.

� �
# s e n d d a t a t o GPU

R 1 = R a w D a t a ( S 1 , c c _ l e n , c c _ s t e p ) | > g p u

R 2 = R a w D a t a ( S 2 , c c _ l e n , c c _ s t e p ) | > g p u

R = [ R 1 , R 2 ]

# p r e p r o c e s s o n t h e GPU

d e t r e n d ! . ( R )

t a p e r ! . ( R )

b a n d p a s s ! . ( R , f r e q m i n , f r e q m a x , z e r o p h a s e = t r u e )

# FFT o n GPU

FFT = r f f t . ( R )

w h i t e n ! . ( FFT , f r e q m i n , f r e q m a x )

# c o m p u t e c o r r e l a t i o n a n d s e n d t o c p u

C = c o r r e l a t e ( FFT [ 1 ] , FFT [ 2 ] , m a x l a g ) | > c p u� �
Listing 3.4: GPU‐based cross‐correlation workflow testing in the REPL

4.3 Large-N Processing

Seismic arrays with many sensors, so called “large-N” arrays, attempt to record the complete seismic

wavefield128. Ambient noise cross-correlation analyses can benefit greatly from large-N datasets,

as close station spacing and high sampling rates increase spatial and temporal resolution for tasks

such as tomography145,196 or near surface monitoring using the change in seismic velocity37. One

challenge of using large-N datasets is handling the massive amounts of waveform data, on the order
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of hundreds of gigabytes to terabytes per day, that sensors such as seismic nodes145,78,253, distributed

acoustic sensing5,77 or mixes of sensors275, can produce. Processing these data is challenging for

all but the largest supercomputers. Strategies for processing large-N data products include locally

sparse tomography29, local similarity143, graph clustering201, the subarray method with double

beam-forming45, and data compression154, among others.

Here, we present a strategy for computing ambient noise cross-correlations from large-N datasets

with SeisNoise.jl. We use data from a single day of the LArge-n Seismic Survey in Oklahoma (LASSO)

Experiment as a test dataset. The LASSO experiment used≈1,830 single-component nodal seis-

mometers in North Central Oklahoma, shown in Figure 3.478, from April - May 2016 to capture

induced seismicity due to wastewater injection. We use data from theN = 1, 825 stations oper-

ating onMay 1, 2016. The data are sampled at 500 Hz and the total size of raw data stored in SAC

files is 294 GBs. We consider all combinations of station-pairs, giving 1,664,400 cross-correlation

pairs total. We follow a similar pre-processing strategy as in the benchmark in Section 3.2: we down-

sample the data to 250 Hz, remove the instrument response, bandpass filter between 0.1 and 20 Hz,

and finally segment the data into 15 minute windows with 50% overlap (191 windows per day).

We compute a Fourier transform of the pre-processed data once for each station, then write the

frequency-domain data to disk. This takes 69 minutes using 6 CPU cores and would scale linearly

with increased CPU cores.
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Figure 3.4: Location of 1,825 stations used from the LArge‐n Seismic Survey in Oklahoma deployment operating on May
1, 2016. Average station spacing is 400m. Location of array in Northern Oklahoma is shown on inset map.

We use GPUs to cross-correlate the LASSO dataset. We use 2 different GPUs in this example:

desktop (NVIDIA 1070 Ti) and server (NVIDIA V100), with 8GB and 32GB of VRAM, and 8

TFLOP (1 TFLOP = 1012 floating point operations per second) and 14 TFLOP of single-precision

performance, respectively. Each of these GPUs does not have enough VRAM to store all FFTs in

the dataset (293 GB) all at once. We thus use a processing strategy similar to the MPI-based strat-

egy of Chen et al. 48 to minimize I/O. We load stations into memory on the GPU in groups such

that the number of stations per group,Npg, times the size of each FFT in memory, 163MB in
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our case, is about 30-40% of the total VRAM for each GPU (Npg = 18 and 73, for NVIDIA

1070 Ti and V100 GPUs, respectively). This allows us to hold two groups of FFTs in memory on

the GPU at a time, while also reserving memory for output cross-correlations. We first load one

group on the GPU and cross-correlate all stations in the group. Intra-group cross-correlation give

(Npg ∗ (Npg − 1))/2 station pairs per group. While the first group is cross-correlating on the GPU,

we use asynchronous I/O to load the second group of FFTs into RAM on the CPU.We then cross-

correlate each FFT in the first group with every FFT in the second group, for a total ofN2
pg station

pairs. We then loop through every combination of groups, using asynchronous I/O to maximize

the use of our GPUs. Daily cross-correlations are stacked before being transfer back to the CPU

and written to disk. A moveout plot for all 1,664,400 pairs stacked for a day in 50m inter-channel

distance is shown in Figure 3.5.
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Figure 3.5: Stack of 1,664,400 cross‐correlations from the LASSO array filtered in the frequency band 1‐2 Hz and
stacked in 50 m bins.

GPU are efficient for computationally demanding tasks. By our calculations, a single core of the

CPU used in Section 3.2 would take 6.75 days (or 162 hours) to compute the cross-correlations

alone of the single-day LASSO dataset. Moving the computation to the GPU takes 31 hours on a

1070 Ti GPU (a speed up of more than 5 compared to the CPU) and 16 hours on a V100 GPU.

Processing time scales linearly with GPU performance. As seen with the performance of neural net-

work computations136, we expect Large-N cross-correlation results will improve with faster GPUs

and even larger datasets.
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5 Future Development

We have taken a functional, minimal, and modular approach to the development of SeisNoise.jl.

As the breadth of research topics in ambient seismic noise continues to grow175, we do not expect

the core of SeisNoise.jl, its data structures and core functions, to change. This will allow future

researchers to employ and extend SeisNoise.jl for their particular needs. For example, we have imple-

mented a simple package for ambient seismic velocity monitoring (https://github.com/tclements/SeisDvv.jl)

that is compatible with SeisNoise.jl. We anticipate that computation-heavy ambient noise research,

such as global full-waveform inversion219 or structural imaging using Distributed Acoustic Sens-

ing5, could be ported to the GPU using SeisNoise.jl and Julia. Contributions to SeisNoise.jl and

new packages based on SeisNoise.jl are welcome on Github.

Plotting in Julia is still in its infancy. The time-to-first plot in Julia is long (think seconds, instead

of milliseconds) because Julia code is just-in-time compiled, rather than pre-compiled. Subsequent

plot calls are relatively fast. All plots (except Figure 3.1) in this manuscript were made using the na-

tive Julia plots library, Plots.jl, which is based upon GR framework (gr-framework.org). There are

other options for plotting in Julia, including, but not limited to, the web-based Plotly framework

(https://github.com/plotly/Plotly.jl), the popular Python-based PyPlot (https://github.com/JuliaPy/PyPlot.jl)112,

andMakie (https://github.com/JuliaPlots/Makie.jl), a library high level plotting on the GPU in Ju-

lia. Maps, such as Figure 3.4, can be made with the Julia wrapper for the Generic Mapping Tools289.

Due to the current flux of plotting in Julia, we may reevaluate the use of Plots.jl for plotting with

SeisNoise in the future.

While GPU programming in SeisNoise.jl is promising, it is in no way yet optimized. Our per-

formance benchmarks indicate a 3-4x speedup going from cross-correlation on the CPU to GPU,

whereas the theoretical maximum speedup is somewhere between 10-20x. We suggest three future

improvements to close that gap. The first is porting all SeisIO.jl functionality to the GPU. Seis-

42



Noise.jl depends heavily on SeisIO.jl for initial preprocessing, such as downsampling and instru-

ment response removal. Modifying SeisIO.jl, such that it can process SeisChannel on the GPU,

will allow for an end-to-end GPU-based cross-correlation workflow. At the time of writing, this

project is under development. The second improvement is to write optimized GPU kernels using

CUDA.jl. Currently, the GPU code in SeisNoise.jl is written in pure Julia. We anticipate writing

custom CUDA kernels using CUDA.jl, will result in large speedups for our filtering operations.

Our final suggested improvement is to use NVIDIA Tensor Cores for cross-correlation. Tensor

Cores are specialty GPU hardware that offer 10x the matrix multiplication performance of CUDA

cores. We anticipate implementing time-domain cross-correlations in SeisNoise.jl to use Tensor

Cores could result in a significant speedup in the case where no pre-whitening of the time series

is required154. GPU-compute in SeisNoise.jl is only available with NVIDIA devices at the time

of writing. GPU-compute using devices manufactured by Intel and AdvancedMicro Devices are

not yet supported in Julia, though packages for both the AMDRadeon Open Compute platforM

(ROCm) (AMDGPUnative.jl) and the Intel oneAPI unified programming model (oneAPI.jl) are

currently under development.

In the coming years, we expect that cloud computing, which is optimal for embarrassing paral-

lel jobs, will become the dominant platform for assembling massive ambient seismic noise datasets,

performing ambient noise cross-correlation and sharing results149. Cloud-based workflows will be

essential for decreasing time-to-science. While we have only tested SeisNoise.jl on AmazonWeb

Services using the Julia AWS API (AWSCore.jl - https://github.com/JuliaCloud/AWSCore.jl), inte-

gration of SeisNoise.jl with other cloud-based compute systems, such as Google Cloud, Microsoft

Azure and the NSF-funded Jetstream cloud245, will give researchers options for their cloud comput-

ing needs.
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4
Single Seismic Station

Groundwater Monitoring

You can observe a lot just by watching.

Yogi Berra
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1 Introduction

The autocorrelation of ambient seismic data is a suitable technique for monitoring changes in

groundwater level. Heterogeneities in Earth’s upper crust readily scatter seismic energy10. Scattered

waves are more sensitive to perturbations in the subsurface than direct waves, as scattered waves

sample the same location multiple times. This allows scattered waves to accumulate phase delays in

response to perturbations. Grêt et al. 97 showed that the seismic velocity in a laboratory sandstone as

measured with scattered coda waves242 decreased linearly with increasing saturation, whereas there

was no noticeable change in velocity for direct waves. At frequencies above 1 Hz, anthropogenic

sources, such as vehicles, wind farms, oil and gas production, and other industrial activities generate

high-frequency surface waves that are observable on seismometers kilometers away158,71,225.

Claerbout 55 was the first to theoretically derive the relation between the autocorrelation of earth-

quake seismograms and the surface response to an impulse force, or the zero-offset Green’s func-

tion. It was only twenty years after this result that Claerbout et al. 54 speculated, though did not

prove, that the autocorrelation of ambient seismic noise should yield a reflection seismogram, based

on the fact that the autocorrelation of white noise yields an impulse function and that the auto-

correlation of ambient seismic noise yields an impulse function. Physically, the autocorrelation of

ambient noise, which is the cross-correlation of waves ascending from depth with down-going waves

reflected from the surface54, yields singly and, at later lag times, multiply-scattered waves from re-

flectors at depth. Rickett and Claerbout 205 further speculated that continuous autocorrelation of

ambient noise could yield real-time monitoring of the subsurface.

There are two options for single-station ambient noise cross-correlation: auto-correlation (AC),

which is cross-correlation of a ground velocity component (east, north, vertical) with itself (e.g.

east-east, north-north, or vertical-vertical), or single-station cross-correlation (SC), which is the

cross-correlation of differing channels (e.g. the causal and anti-causal sides of the east-north, east-
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vertical, etc.. components)108. I focus the following analysis on SC functions, as they provide more

stable results and more independent measurements (6 vs 3) than AC functions108,271. SC func-

tions have differing sensitivities: the east-north component is sensitive to Rayleigh and Love waves,

while the east-vertical and north-vertical components are sensitive to Rayleigh waves only108. How-

ever, empirically, there are numerous examples that show that body-wave information may be re-

covered from ambient-seismic noise AC and SC functions, in a similar fashion to receiver func-

tions263,65,57,222.

Changes in groundwater level (pore pressure) affect both the phase and amplitude of seismic

waves. Amplitude changes can be recovered through characterizing seismic attenuation, the rate of

decay of seismic waves. In most rocks, attenuation increases with increasing saturation155. Usually

it is easier to measure the attenuation of coda waves (Q−1
c ), which sample more area for longer time,

than direct waves10. Determining the cause of temporal changesQ−1
c is often inconclusive - many

authors have not found a link betweenQ−1
c and earthquakes50,24, thoughQ−1

c in California varies

on the order of∼ ±30% through time247,152. AQ−1
c decrease after eruption at Mt. St. Helens

suggest thatQ−1
c is sensitive to fluids85. In Chapter 1, we introduced a method to monitor seismic

attenuation continuously over decades using SC functions from a single seismometer.

Phase delays of seismic waves are the result of changes in seismic velocity. Calculating seismic

velocity change measurements, dv/v, from single-station ACs and SCs has gained popularity in the

last decade due to their localized spatial sensitivity and small computational footprint - a network

of n stations scales with n in time for AC vs n2 for CC. dv/v from ACs has been employed to mon-

itor volcanic eruptions63, earthquakes204,271,108 and more recently, for groundwater129 and soil

moisture monitoring114 in local settings. In aquifers, there is an inverse relationship between satura-

tion (groundwater level) and seismic velocity185. There are several scales at which the perturbation

in seismic velocities have been associated with hydrological processes - the near surface, upper 10

meters, soil moisture and shallow water table114,180, changes in permafrost at depth115, groundwa-
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ter level changes from 50 - 500m depth230,268,58 and deep changes in pore pressure at up to 8 km

depth207,276.

Subsurface hydrology operates at a range of scales: from the surface to kilometers in depth, from

meters to hundreds of kilometers spatially, and from seconds to decades temporally. The spatial

sensitivity of a groundwater well can be on the order of meters to kilometers, depending on the rate

at which an aquifer transmits water and the amount of water released from storage when the head

in the aquifer falls260,223. To understand their spatial sensitivity, I take the example of a pumping

well. Theis 261 expressed the drawdown (difference in hydraulic head) Δh(r, t) in the vicinity of a

well with the pumping rateQ,

Δh(r, t) =
Q
4πT

∫ ∞

u

e−z

z
dz, u =

r2S
4Tt

, (4.1)

based on the exact analogy to the cooling of a metal plate and where r is the radial distance from

the well, T is the coefficient of transmissibility, u is a dimensionless quantity, S is the coefficient of

storage, and the definite integral
∫∞
u

e−u

u du is the exponential integral261,260. The radius of the cone

of depression due to groundwater pumping is dependent only on S, T, time of pumping t, whereas

the amplitude of Δh(r, t) is linearly proportional to the pumping rateQ260. Due to their decreasing

spatial sensitivity with increasing r, groundwater level measurements from groundwater wells can be

thought of as point measurements.

Groundwater well measurements and single-station cross-correlation functions share a diffusive

spatial sensitivity. Using a diffusion approximation, Pacheco and Snieder 188 found the 3D sensitiv-

ity kernel for the propagation of scattered waves,K3D, for a co-located source and receiver to be,

K3D(r, t) =
1

2πDr
exp(

−r2

Dt
) (4.2)

where r is the location of the receiver, r is the distance from the source, t is the propagation time,
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andD is the diffusion constant. From equation 4.2, I note that for a fixed r, sensitivity increases

with t. In a diffusive regime, the distance travelled from the source is related to the square root of

time, r ≈
√
4Dt188. Ambient seismic autocorrelations (AC), where the source and receiver are

co-located, are thus most sensitive to the area directly below the seismometer, which agrees with

Claerbout’s conjecture that an AC is a reflectivity response. This is in contrast to ambient noise

cross-correlations (CC), which are sensitive to the regions beneath a pair of seismometers and the

path between them188,182. Noting the similarity of equations 4.1 and 4.2 with respect to the scaling

of r and t, I believe ACs are a more natural analog to groundwater wells in the case of groundwater

monitoring than CCs. The new contribution of this analysis is a comprehensive comparison obser-

vations derived from hydrological, seismic, and geodetic measurements, and of empirical and theo-

retical hydrological models. In particular, I develop a transfer function between dv/v and ground-

water level changes, which I derive using poro-elastic and nonlinear elastic theory and validate using

hydrological observations and geodetic water proxies.

2 Data

For this chapter, I use 18 years of three-component, continuous seismic velocity data from South-

ern California Seismic Network station CI.LJR to calculate the change in seismic velocity, dv/v,

through time. CI.LJR is located in the Tejon Pass between the San Emigdio and Tehachapi Moun-

tains40, about 1.5 km east of both the San Andreas Fault and Interstate I-5. Additionally, I gather

daily precipitation data from the Parameter-elevation Regressions on Independent Slopes Model

(PRISM) dataset, weekly LiquidWater Equivalent (LWE) estimates from the Gravity Recovery

and Climate Experiment (GRACE) and Gravity Recovery and Climate Experiment Follow-On

(GRACE-FO) missions221, annual groundwater measurements fromUSGS well 344614118454101,

and weekly groundwater measurements from wells in the Castac Lake Valley Basin44. Groundwater
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proxy data have differing time spans and sampling rates - GRACE LWE data spans from 2002 until

now, with a slight gap in 2017-2018 between the end of GRACE and the launch of GRACE-FO.

PRISM precipitation data is daily from 1985 until now. Groundwater level measurements from

well 344614118454101 start in 2005. The location of instruments and dataset grid cells used in this

chapter are shown in Figure 4.1. GRACE data from CSRGRACE/GRACE-FO are sampled in

0.25◦ x 0.25◦ grid cells, but their true resolution is near 250–300 km due to the band-limited nature

of GRACE and smoothing applied during processing221.
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Figure 4.1: Location of seismometer CI.LJR (gold triangle) and groundwater proxies. The chartreuse rectangle denotes
the 4km x 4km precipitation grid cell from PRISM dataset. The black line indicates the path of Interstate 5 through
the Tejon pass. The dashed blue circles approximate limit of spatial sensitivity of CI.LJR autocorrelation at lag times of
τ = 2 and 8 seconds, respectively. The filled blue dots indicate position of nearest groundwater wells to CI.LJR. The
orange rectangle denotes 0.25◦ x 0.25◦ grid cell from CSR GRACE/GRACE‐FO RL06 version 2 Liquid Water Equivalent
(LWE) dataset.

2.1 Precipitation at CI.LJR

CI.LJR is located in a Mediterranean climate, typified by mild, wet winters and hot, dry summers76

- nearly all rainfall occurs fromOctober to May. Daily precipitation levels at CI.LJR are well ap-

proximated by an exponential distribution (P < 1e − 4)203. Annual precipitation totals are heavily
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dependent on large storms - the wettest 10% of days account for 49% of the annual rainfall69, as

shown in Figure 4.2.

Figure 4.2: Cumulative annual (Oct 1 ‐ Sep 30) precipitation levels near seismic station CI.LJR for wettest 10% of days
(red) and remaining 90% of days (blue) with rainfall.

In California, annual precipitation totals are heavily dependent on large storms - the wettest 10%

of days account for 49% of the annual rainfall69, as shown in Figure 4.2. The variance in annual

precipitation at CI.LJR is strongly linked to the the number and intensity of large storms in a given

year. Since 1992, there has been a 54% reduction in cumulative annual rain contribution from the

remaining 90% of wet days (P = 0.002). There is also a clear absence in extremely wet years, the last

one being in 2005. Two time periods stand out from the precipitation record. First, in the winter

of 2004-2005, the annual precipitation was over 3 times the median annual value and there were 18

days with large storms. Second, in the drought years of 2012-2016, annual precipitation was below

the median annual value for five consecutive years and there were on average only 3 large storms a

year. The years 2012-2015 were without precedence in paleoclimatic history, representing a more

than 20,000 year event208. These swings from deluge to drought are due to the presence/absence
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of a high-pressure ridge off the west coast276, dubbed the ”Ridiculously Resilient Ridge”249, which

prevent large storms from reaching inland California69.

2.2 Groundwater near CI.LJR

CI.LJR sits on a local topographic high, the Tejon Lookout, in the southerwestern edge of the

Tehachapi Mountains, where pre-Cretaceous metasedimentary rocks outcrop at the surface40.

Groundwater in the Tejon Lookout flows into the Cuddy Canyon Basin to the West, Peace Valley

to the South, and Castac Lake Valley Basin (CLVB) to the north. Flow is likely constrained by the

San Andreas Fault to the South and the southern branch of the Garlock Fault to the north. The

CLVB is a small (∼ 14km2) groundwater basin that provides drinking water for the town of Lebec,

CA and irrigation for nearby agriculture. Groundwater is thought to be unconfined in the entire

CLVB. Groundwater wells in the CLVB have declined by 25 m since 2008, due to the combined ef-

fects of drought and groundwater extraction for residential use, irrigation and maintaining the level

of Castac Lake44, as shown in Figure 4.3. Groundwater levels in the Peace Valley to the southeast

of CI.LJR showmodest∼ 2m declines over the last decade. CI.LJR is located 2 km away from and

300 m above the nearest pumping well. I thus assume changes in groundwater levels at CI.LJR are

due to deep percolation from precipitation79 and not due to pumping.
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Figure 4.3: Groundwater levels in the Castac Lake Valley Basin. The monitoring and pumping wells are shown in light
blue and red, respectively. The elevation of Castac Lake level shown in black.

3 Methods

3.1 Ambient Seismic Single-Station Cross-Correlations

I calculate daily SC functions for station CI.LJR using all available data from 2002 - 2021 in the

Southern California Earthquake Data Center (SCEDC) public dataset. I process the east, north,

and vertical components in daily chunks using the SeisIO.jl module for seismic data processing in

the Julia language127. To minimize the impact of sensor or data transmission issues, I taper data

gaps with a 100 second cosine window. Daily waveforms are demeaned, detrended, and highpass fil-

tered above 0.4 Hz before removing the instrument response. I then resample data to 40 Hz before

extract windows of 30 minutes with an overlap of 75% between windows from the daily trace227.

I use the SeisNoise.jl module detailed in Chapter 3 to further process the windowed ambient noise

data59. Windows are demeaned, detrended, and tapered with a 20 second cosine window. I then

whiten data between 0.5 and 19 Hz and apply one-bit amplitude normalization21. I cross-correlate
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the east-north (EN), east-vertical (EZ), and north-vertical (NZ) components in the frequency do-

main before transforming them back to the time domain. A daily SC is then created for each com-

ponent by stacking all 30 minute windows for each day using the robust stack algorithm (Yang et

al., 2021 to be submitted to Geophysical Journal International). Daily NZ correlations for station

CI.LJR for lag times τ ∈ [2, 10] seconds are shown in Figure 4.4.

Figure 4.4: North ‐ vertical single‐station cross‐correlation for station CI.LJR. Top: Daily NZ cross‐correlations from
2003‐2021 for lag times τ ∈ [2, 10] seconds in the 2‐4 Hz frequency band from CI.LJR with amplitude scaled by τ.
Bottom: Daily power spectral density for station CI.LJR. White regions indicate data gaps or instrument failures.

3.2 Change in Seismic Velocity, dv/v

I compute changes in seismic velocity, dv/v, using the stretching technique230, which assumes that

relative time delays, dτ/τ, in the arrival of coda waves are linearly related to changes in velocity of

the medium, dv/v = −dτ/τ. To recover dv/v, daily SC functions are “stretched” at times τ(1 − ε)

by various stretching factors ε and compared to a reference SC waveform. The recovered velocity

change is then given by the stretching factor ε = dv/v that maximizes the correlation coefficient,
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CCi(ε) =
∫ t2
t1 SCi[t(1− ε)]SC0[t]dt√∫ t2
t1 SC2i [t(1− ε)] ·

∫ t2
t1 SC20[t]

(4.3)

where SCi is a daily SC, SC0 is the reference SC, and t1 and t2 are the start and end of the coda

window used to calculate dv/v, respectively98. Before stretching, I filter the SC functions in 4 fre-

quency octaves, 1-2 Hz, 2-4 Hz, 4-8 Hz and 8-16 Hz. Rayleigh wave sensitivity kernels for CI.LJR

for each octave are shown in Figure 4.7. I calculate dv/v in each frequency band using 10-day stacks

of SCs against the reference stack of all∼20 years of SCs. I apply stretching to both the causal

and acausal sides of SCs in a window between 4 · Tmin and 16 · Tmin seconds lag time, where

Tmin = 1/fmin, and fmin is the minimum frequency in a frequency band, with trace stretching

between ε = −5% and 5%, in increments of 0.001%. I then take a weighted average of dv/v values

using the correlation coefficient of the stretched window for the causal and acausal sides of the EN,

EZ, and NZ components,

dv/vi =
∑N

k=1 c2ik · dv/vik∑N
k=1 c2ik

(4.4)

to give a single dv/vi measurement per day, whereN = 6 and cik is the maximum correlation co-

efficient between the kth component of the daily and reference SCs after stretching108,271, as shown

in Figure 4.5.
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Figure 4.5: dv/v in the 2‐4 Hz frequency band for CI.LJR. Top: Average dv/v for station CI.LJR using equation 4.4, where
the colorbar indicates cik value. Bottom: Correlation matrix for all SC component dv/v times series.

3.3 Change in Coda Attenuation

Here, I propose to monitor the relative change in coda wave attenuation,Q−1
c , from ambient noise

SC functions. Given the source-receiver configuration, the single-station noise-derivedQ−1
c is simi-

lar to a local site effect. Unlike measurements ofQ−1
c for earthquakes, here the source is an impulse

delta force at the receiver site. I follow the derivation ofGot et al. 95 , who introduced temporal mon-

itoring ofQ−1
c using pairs of nearly identical earthquakes (doublets), which we call ΔQ−1

c . I assume

that the early coda of autocorrelations are made of surface waves182,184,298. The spectral amplitude

of coda waves at lapse time t and angular frequency ω is given by Aki and Chouet 10 ,

Ai(ω, t) = Cit−αe−ωtQ−1
ci /2 (4.5)
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where Ci is the amplitude of the single-station correlation on day i and α = 1 for surface waves. The

reference SC function is a simple linear stack over all daily SC functions. I.e. Aref(t) = 1
N
∑N

i=1 Ai(t),

where Ai is a daily SC function. The logarithm of the spectral ratio of an SC function on day i and

the reference is,

ln
(

Ai(ω, t)
Aref(ω, t)

)
= ln

(
Ci

Cref

)
+
(ω
2
ΔQ−1

i

)
t (4.6)

where ΔQ−1
i = Q−1

i − Q−1
ref . I note that equation 4.6 is linear in terms of t and does not de-

pend on the geometric spreading factor α. The workflow to measure ΔQ−1
i is similar to the Moving-

Window Cross-Spectrum (MWCS) technique used to measure phase-delays in coda waves56. I first

smooth Ai(t) over the previous 90 days to improve signal to noise ratio. I then select 3.2 second

Hanning windows in the SC functions starting at t = 5 second lag time. I then apply a 0.5 second

spectral smoothing before computing the log spectral ratio in each window. I then slide through

the lag times in 0.25 second steps until a lag time of t = 10 seconds. For each frequency ω, I use a

weighted linear regression to solve equation 4.6 for ΔQ−1
c , where the weights are the cross-coherence

between Ai(ω, t) and Aref(ω, t) in each window. I then take the average of each ΔQ1−
i (ω)measure-

ment in the frequency band 2-4 Hz as the representative ΔQ−1
i .

3.4 Modeling Groundwater Changes from Precipitation

Precipitation is one of the sources of groundwater recharge and thus can be used to estimate changes

in groundwater levels. In Earth system science, inference methodologies fall into two categories: em-

pirical and theoretical. Among the theoretical approaches to estimate groundwater level, physics-

based models numerically simulate three-dimensional groundwater flow, but rely on a detailed

knowledge of the aquifer and host rock properties156. For areas where detailed hydrological parame-

ters are unknown or undetermined, simpler theoretical methods, such as the pore pressure diffusion
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model have been adopted by numerous authors to estimate changes in groundwater levels from pre-

cipitation207,276,147,276. In this contribution, I discuss 3 main methods to predicting ground water:

two based on poro-elasticity and one based on empirical measurements.

The simplest models of groundwater level changes couple Darcy’s or Boussinesq’s equations with

precipitation input. Sens-Schönfelder andWegler 230 developed a model for groundwater levels after

precipitation based on the assumption that under a linearized Depuit-Boussinesq flow, drainage

occurs exponentially as,

Δhi(t) =
i∑

n=0

p(tn)
φ

e(−a(ti−tn)) (4.7)

where φ is the porosity and p(ti) is the amount of precipitation on day ti. This model approxi-

mates the classic baseflow recession curveQ = Q0e−at, whereQ is the rate of flow, t is time,Q0 is the

flow when t = 0, and a is a constant that depends on the time scale of recession256.

Poro-elasticity couples pore pressure, stress fields, and input source terms228. Roeloffs 212 calcu-

lated the coupled poro-elastic response at depth r due to a load of amplitude p0 at the surface as,

P(r, t) =
B(1+ νu)
3(1− νu)

p0erf
[

r
(4ct)1/2

]
+ p0erfc

[
r

(4ct)1/2

]
, (4.8)

where erf and erfc are the error and complementary error functions, respectively, c is the diffusiv-

ity of porous material, t is the time since the load was applied, νu is the “undrained” Poisson’s ratio,

and B is the Skempton’s coefficient. B is close to 1 at the surface and decreases with depth211. The

first term on the right side of equation 4.8 is the undrained poro-elastic response due to elastic load-

ing, whereas the second term on the right side of equation 4.8 is the drained poro-elastic response

due to diffusion. The medium response is “undrained” when there is no fluid flow in response to

a change in stress Δσij 202. At zero lag time, the response is undrained, while at infinite lag time, the

response is fully drained. Earthquakes and elastic loading from precipitation are natural examples of
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stresses that stimulate undrained responses.

Talwani et al. 257 modifiedRoeloffs 212 ’s model to accommodate the change in pore pressure at

depth due to a series of precipitation loads, given by,

Pi(r, t) =
B(1+ νu)
3(1− νu)

n∑
i=1

δpierf
[

r
(4c(n− i)δt)1/2

]
+

n∑
i=1

δpierfc
[

r
(4c(n− i)δt)1/2

]
(4.9)

where n · δt is the number of days since the start of the rainfall time series and δpi = ρgδh is

the groundwater load change variation due to precipitation δh on day i. Rivet et al. 207 andWang

et al. 276 , among others, have used the drained part of equation 4.9 to model pore pressure changes

due to precipitation at depths down to 8 km, which is reasonable due to the low values of B at these

depths. On the contrary, near-surface groundwater level changes, such as I expect at CI.LJR, may

rather be the result of an undrained response.

Recently, Smail et al. 239 introduced the empirical approach of cumulative deviation from the

moving mean (CDMk) of precipitation to estimate deviations in groundwater level from precipita-

tion measurements alone. The CDMkmethod assumes that groundwater levels respond to deficits

or surpluses of precipitation in the last k days, where k >> 365, which is a rough approximation to

Darcy’s law. Given a daily precipitation time series, Pi, the CDMk for each day i is simple to com-

pute,

CDMik =
i∑

j=1
Pi − P̄ik (4.10)

where Pi − P̄ik is the daily deviation from the moving or rolling mean P̄ik = 1
k
∑i

j=i−k+1 Pj of k

days. CMDk time series for moving mean values of 1, 6, 24 and 92 months are shown in Figure 4.6.

Increasing k increases the memory of groundwater to longer-term trends in precipitation. Smail
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et al. 239 found that CDMk of 60 months correlated well to groundwater levels in both bedrock and

unconfined aquifers but had no correlation to levels in highly confined aquifers. The CDMk and

Talwani et al. 257 models are similar. In fact, the Talwani et al. 257 model evaluated at r = 0 m con-

verges to the CDMk with k = ∞, or just the cumulative deviation from the mean of precipitation.

Figure 4.6: Cumulative deviation from the moving mean (CDMk) of precipitation using 1, 6, 24, and 92 month moving
means.

I test the baseflowmodel, the undrained poro-elastic model, and the CDMkmethod to assess the

influence of precipitation on the perturbation in seismic velocities at CI.LJR. I calculate the best

moving mean value k by correlating CDMk against dv/v,

CDMbest = max
k

cov(dv/v,CDM(tk))
σdv/vσCDM(tk)

, (4.11)

using k values from 1 to 14 years. I similarly calculate a best fitting baseflow and poro-elastic
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models by varying a (in equation 4.7) and c (in equation 4.9).

3.5 Modeling Groundwater Time series from dv/v

Here, I model the change in groundwater levels at station CI.LJR, given our measured dv/v and

the transfer coefficients developed in Chapter 1 Sections 3 and 4. I recall the relation between dv/v

and the changes in hydraulic head or groundwater levels Δh, dv/v =
βSskβ
B Δh. My model depends

on the undrained Poisson ratio νu, the Skempton’s B coefficient, the effective rigidityG, and the

acoustoelastic constant β, of which B and β are the least constrained. CI.LJR sits atop the Tejon

Lookout granite, a salmon-colored biotite granite that is interspersed with metasedimentary rocks,

such as marbles, quartzites, slates, phyllites, schists and limestones186. Hart andWang 99 measured

values in the range of 0.22 - 0.26 and 0.28-0.31 for the drained and undrained Poisson’s ratios ν and

νu, respectively, of Indiana Limestone, while granite has a Poisson’s ratio of∼ 0.2 at 10MPa119.

Given my uncertainty of the poro-elastic properties of the rock at CI.LJR, I use the formula given

by Christensen 52 for the undrained Poisson’s ratio as a function ofVp/Vs to get a νu = 0.27. Given

that Skempton’s B coefficient has been measured to be 1 at low effective stress211, I assume B = 1

for groundwater recharge near the surface. I derive a shear modulusG = 20GPa usingG = V2
s ρ

from the Southern California Earthquake Center velocity model. Using these values, g = 9.81m/s2,

and ρ0 = 1000kg/m3 for the pore fluid, gives a value of Ssk = 2.7 × 10−7m−1 for the skeletal

specific storage, which is∼ 35% less than the value Ssk = 9.3 × 10−6m−1 Riley 206 reported in

Central California.
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Figure 4.7: Surface wave sensitivity for CI.LJR. Left: Velocity model for CI.LJR from SCEC Community Velocity Model.
Right: Surface wave sensitivity kernels ( ∂c∂Vs

= partials of the phase velocity with shear velocity for fixed frequency and
density) for CI.LJR computed with Computer Programs in Seismology102.

Choosing an accurate value of β is difficult without a priori information on the local volumetric

strain, which in the case of CI.LJR is likely dominated by groundwater changes. Given the range in

experimental values for |β| = 1× 103− 6.9× 104 found by previous authors (Takano et al. 255 , Sens-

Schönfelder and Eulenfeld 229 ,Mao et al. 153) I test values of β = [5 × 103, 7.5 × 103, 1 × 104]

with our model. I find that a β = 3.7 × 103 explains the relation between our measured dv/v and

the change in groundwater level at a well in the CLVB 3 km from CI.LJR, as shown in Figure 4.8.

This β is over an order of magnitude higher than the β = 2.2 × 102 value reported byNur and

Simmons 178 for Barre granite in a laboratory, which suggests that the groundwater level change

at CI.LJR is a factor of 10 or so less than in the CLVB. Further measurements of Murnaghan’s

constants in a wide variety of rocks will lead to better constraints on β.
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Figure 4.8: Groundwater level changes measured at monitoring well MW1 compared to modeled groundwater levels
using equation 1.15.

4 Results andDiscussion

I see three distinct contributions to dv/v changes measured at CI.LJR: (1) rapid velocity decreases

due to sudden groundwater recharge, (2) long-term velocity increases due to drought, and (3) sea-

sonally varying velocities that are explained by groundwater level fluctuations. These trends are

similar to our previous work58 in the San Gabriel valley, where groundwater levels declined in re-

sponse to the record setting drought of 2012-2016. Here, I focus our discussion of dv/v to the 2-4

Hz frequency band, which has the high and most stable power of any frequency band. Short and

long-term trends in dv/v associated with groundwater at CI.LJR are discussed in Chapter 5.
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Figure 4.9: dv/v compared to CDMk of precipitation, GRACE LWE and groundwater level near station CI.LJR. Left axis:
dv/v (red dots colored by correlation coefficient to stack), scaled CDMk of precipitation (chartreuse) with correlation
coefficient = ‐0.97, scaling factor = ‐42.1, and scaled GRACE LWE (orange) with correlation coefficient = ‐0.88, scaling
factor = ‐20.7. Right axis: Groundwater level w.r.t surface (blue with cyan dots) for a well 10 km away from CI.LJR with
correlation coefficient = ‐0.90, scaling factor = ‐79.3. Bottom left axis: Cumulative annual water year precipitation (Oct
1 ‐ June 1) for PRISM grid cell containing station CI.LJR.

4.1 Seasonality

I observe moderate levels of seasonality in dv/v at CI.LJR in the 2-4 Hz frequency range. Previously,

Meier et al. 160 measured seasonal changes in dv/v across Southern California in the 0.1-0.2 Hz band

and suggested that seasonality was more likely to come from thermo-elastically induced strains than

poro-elastically induced strains, but did not investigate correlations with measured temperature or

groundwater variations. Hillers and Ben-Zion 103 found that seasonal variations in the amplitude

of ambient noise in Southern California in the 2-18 Hz band were dominated by annual tempera-

ture and wind speed changes and not seasonal groundwater recharge, and ruled out groundwater

variations without investigating. Seasonal variations in dv/v at CI.LJR should not be due to seasonal

changes in noise source or amplitude, as the station is located within 1 km of traffic on interstate

I-5, where∼ 1 vehicle per second entered the Tejon Pass from the north and south in 2019 (data
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accessed from California Department of Transit). Tsai 268 comparedMeier et al. 160 ’s dv/vmeasure-

ments to thermo-elastic, poro-elastic, and hydro-elastic models of dv/v, and found that either the

poro-elastic or direct elastic response from water table variations were more likely to induce seasonal

variations in dv/v than thermo-elastic strains at the particular site of investigation of the Los Angeles

Basin160.

To assess the contributions of temperature or precipitation-driven seasonality, I cross-correlate

daily mean temperatures from PRISM, dv/v, and CDMk filtered between 0.5 and 1.5 year period.

Filtered daily temperature has a maximum Pearson’s correlation coefficient of 0.93 with dv/v at

a lag of 63 days while dv/v and filtered CDMk have correlation coefficient -0.99 at zero lag. This

compares well with the 55-day and 0-day lags Tsai 268 found between temperature and hydrological

changes, respectively, and dv/v in the Los Angeles basin. From 2012-2016, the seasonal amplitudes

of dv/v are reduced, as compared to the non-drought years 2008-2011 and 2017-2019. Due to the

higher correlation between seasonal dv/v and CDMk than dv/v and temperature, and the correlation

of low seasonal dv/v amplitudes during the drought of 2012-2016, I suggest that seasonality in dv/v

is controlled low-level and low-variance annual precipitation levels at CI.LJR.
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4.2 Comparison of dv/v to Groundwater Proxies

Figure 4.10: dv/v compared to CDMk of precipitation (chartreuse), elastic model of Talwani et al. 257 (orange) and model
of Sens‐Schönfelder and Wegler 230 (SSW06 ‐ blue) at station CI.LJR. All models have been scaled by fitting coefficients.

The tight relationship between dv/v and GRACE liquid water equivalent changes suggest that hy-

drologic changes are the main driver of dv/v at CI.LJR. I confirm this with the three groundwa-

ter - precipitation models mentioned in Section 3.4. The baseflowmodel of Sens-Schönfelder and

Wegler 230 and (CDMk) of Smail et al. 239 are correlated with dv/vwith Pearson correlation co-

efficient≈ −0.97 at zero lag. These models suggest long-termmemories for past precipitation -

the best fitting k for the CDMkmodel was 2,819 days or 7.7 years, while the best-fitting a constant

for the baseflowmodel was 0.0008 days−1, or a half-flow period of∼ 900 days. The fully-coupled

poro-elastic model of Talwani et al. 257 did not fit the observed dv/v, though a purely undrained

model, obtained by disregarding the drained response, fit dv/vwell at zero lag (Pearson correlation
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coefficient with dv/v = -0.96). This strongly suggests that dv/v at 2-4 Hz at CI.LJR responds to the

elastic load due to precipitation and not the diffusion response. I retrieve a diffusivity constant

c = 0.0038m2s−1 from the undrained model, which indicates very slow flow. This value of c falls in

between the ranges found for unfractured and fractured igneous rocks211. The stress-strain relation-

ship at CI.LJR is likely recoverable, as the hysteresis curve between dv/v and CDMk is linear, with

the exception of the transition into the drought in 2012-2013, as shown in Figure 4.11.

(a) (b)

Figure 4.11: Hysteresis curve for dv/v and CDMk. (a) Hysteresis between 2008‐2016. Transition period starts around
2012‐2013 when dv/v increases above previous high. (b) Hysteresis between 2014‐2021. Slight recovery in groundwa‐
ter levels suggests recoverable deformation.
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4.3 Relative Change in Coda Attenuation, ΔQ−1
c

Figure 4.12: Cumulative deviation from the moving mean of precipitation and average ΔQ−1
C measured on EN and NZ

components of CI.LJR for lag times τ ∈ [5, 10] seconds in the 2‐4 Hz frequency band.

The temporal change in coda attenuation (ΔQ−1
c ) derived from SC functions with the method

introduced in Section 3.3 suggests that attenuation variations are related to groundwater. Previous

authors have documented 20−30% temporal changes in attenuation in California247,152. At station

CI.LJR, ΔQ−1
c increased with influx of groundwater in the winter of 2004-2005. An increase in

Q−1
c is expected, and visually apparent from τ ∈ [5, 10] in Figure 4.4B, as laboratory measurements

have shown attenuation increases with increasing saturation126,291. ΔQ−1
c values remained high

through 2013, as precipitation was higher than average during this period, as shown in Figure 4.12.

We see a large decrease in attenuation in early 2013 when dv/v goes above its highest previous

level. We expect that groundwater levels achieved all-time lows at this point. When groundwater

level falls below its previous low, the aquifer skeleton may undergo permanent rearrangement89,

which results in some anelastic compaction. We suggest some form of compaction in less-permeable

layers underlying CI.LJR occurred in 2013, resulting in a drying of the pores, which led to a rapid
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decrease in attenuation. This effect is most likely to occur in the near surface, where lithostatic pres-

sure is low - attenuation decreases with increasing pressure and decreasing saturation126. Our results

agree with recent findings fromMalagnini and Parsons 152 thatQ−1
c changes at the San Andreas

Fault at Parkfield are modulated by groundwater level changes.

These observations could have a large impact on localized seismic hazard estimates, where site ef-

fects come from a combination of amplification and attenuation30. Seismic amplification is related

to the ratio of seismic impedance (density times velocity) at depth to the seismic impedance aver-

aged near the surface. For a unit decline in groundwater level, the change in velocity for rocks with

rounded pores is quite small, on the order of a few percent291. The resulting change in density due

to dryung depends on the specific yield. The decrease in attenuation due to a unit decline in head

should be an order of magnitude greater than the change in velocity, on the order of 10− 30%. The

spectral acceleration of earthquake ground motions is given by

a(f) = A0e−πft∗ (4.12)

where A0 depends on source properties, and t∗ is an attenuation time for seismic waves that travel

as rays,

t∗ =
∫ Q−1

S (r)
VS(r)

dr (4.13)

whereQ−1
S is the shear wave attenuation factor andVS is the shear wave velocity with depth. As

VS decreases rapidly near the surface, t∗ is most sensitive to near surfaceQ−1
s . This suggests that de-

creases in groundwater levels will result in decreased attenuation in future ground motion. Further

research is required to assess if a groundwater-attenuation mechanism could cause anomalously high

ground motions164.
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5 Conclusion

I showed that monitoring the change in seismic velocity, dv/v, at a single seismometer is similar to

measurements made by groundwater wells, GRACE, and precipitation modeling. Unlike satellite

methods, our method directly samples the subsurface and its depth sensitivity can be tuned based

on frequency band. I suggest that the cumulative deviation from the moving mean of precipitation

is a simple and effective technique to infer the effect of precipitation on dv/v. The combination

of dv/v, CDMk and GRACE can be used to predict/calibrate groundwater level changes where

groundwater level measurements are sparse, whereas precipitation records are readily available in the

United States60 and available at varying resolution globally248.

I find that groundwater levels in the vicinity of CI.LJR are strongly linked to the variance in pre-

cipitation from large storms coming to California. I explored three separate models for predicting

groundwater levels from a precipitation time series. I find that models based on Boussinesq flow,

Darcy’s law and poro-elasticity readily explain observed groundwater levels and dv/v at CI.LJR. Im-

portantly, I found that the undrained response dominates over the drained response for near-surface

recharge, which I do not believe has yet been observed.

Initial measurements of the temporal change in coda attenuation,Q−1
c from single-station cross-

correlations suggest that near surface attenuation is also modulated by changes in pore pressure.

With the drying of California expected to continue in the future, we expect reduced attenuation

could lead to stronger ground shaking from future earthquakes.
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The Seismic Signature of California’s

Extreme Events

Water, water, everywhere,

And all the boards did shrink;

Water, water, everywhere,

Nor any drop to drink.

Samuel Taylor Coleridge
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1 Introduction

California is subject to substantial extreme natural events. It hosts large magnitude 7 earthquakes216,

its climate is highly variable with short lived, but extreme precipitation events as atmospheric events70,

and multi-year droughts276. As Earth’s climate is warming, volatility in precipitation is expected to

increase in Mediterranean climates252. In the last decade California has been emblematic of this pre-

dicted trend: the 2012-2016 drought was unprecedented in the observational record250, with the

lowest three-year rainfall recorded in the last hundred years. Snowpack levels in the Sierra Nevada

mountains were 95% below average in 2015, due in part to record temperatures and inadequate

snowfall42. The 2012-2016 drought was followed by one of the wettest January and Februaries on

record in the winter of 2017276.

Rapid shifts from deluge to drought will increasingly stress groundwater supplies in Califor-

nia258. Groundwater is often a last resort when imported water and precipitation are scarce during

drought - Declining groundwater levels lead to a permanent loss in groundwater storage due to

compaction240 and to dry wells in rural areas192. Satellite observations indicate groundwater levels

are in decline once again in California after increased rainfall in the winter of 2017172.

The coupling between earthquakes and groundwater levels is well established274. At time scale

of seconds, strong ground motion from earthquakes can cause groundwater level changes in distant

wells38 and rapidly increase discharge of groundwater into streams273. Recent evidence suggests

earthquakes may temporarily increase aquifer permeability276, which leads to flow. On the annual

scale, seasonal elastic hydrological loading may drive seismicity in California15,123 and Taiwan110.

Here, we investigate the impact of declining groundwater levels and earthquakes on seismic wave

propagation in California. Changes in groundwater level (pore pressure) affect the phase of seismic

waves. Phase delays of seismic waves are the result of changes in seismic velocity. In aquifers, there

is an inverse relationship between saturation (groundwater level) and seismic velocity185. Seismic
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velocity changes due to recharge/decline in groundwater level have been measured with ambient

noise cross correlation230,58.

2 Data andMethods

Seismic monitoring has occurred in California for nearly 100 years, with digitized, continuous mea-

surements going back to 1999113. Recently, the Southern California Earthquake Data Center

(SCEDC) uploaded their entire catalog of continuous seismic data, totaling more than 100 Ter-

abytes (TB), from the Southern California Seismic Network (SCSN) as a Public Data Set (PDS) on

AmazonWeb Services297. Using data from the SCEDC PDS and the Northern California Seismic

Network, we analyzed all available continuous seismic data from broadband seismometers located in

California going back to 1999. We computed daily single-station cross-correlations (SC) for all sta-

tions in the dataset with more than 1 year of data using the same parameters and methods as detailed

in Chapter 4 and my Julia package SeisNoise.jl59. SCs approximate the reflection seismogram with

ambient seismic data, allowing for continuous monitoring of the subsurface at high frequency54.

We compute relative velocity changes, dv/v, for all stations in our dataset in the 2-4 Hz frequency

band204. These dv/v changes are sensitive to the upper 500 m of the subsurface (see Figure
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Figure 5.1: Location of all seismometers (≈ 700) used in this study. Time of observations is 1999‐2021.

3 Results

Overall, the relative contributions between the tectonic, thermal, and hydrological strains vary

across sites. The spatial coherence between these effects is related to the location and intensity of the

events. For instance, the deluge of precipitation in the winter of 2004-2005 lowered seismic veloci-

ties across most of Southern California70, while the effects of the M7.0 2019 Ridgecrest earthquake
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were limited to within less than 50 km from the epicenter of the earthquake.

Hydrologic modulation is the dominant factor in seasonal and long-term dv/v in California. At-

mospheric rivers brought record-setting rainfall to Southern California in the winter of 2004-2005,

with 11 separate storms sweeping across the region in 6 months195,176. Cumulative rainfall for the

time period was 60 cm greater than the mean, which is the highest deviation in the last 20 years.

Groundwater levels in the Los Angeles Basin increased by 20m in response to the extreme precip-

itation130,58, leading to a more than 1% decrease in dv/v at stations in coastal Southern California.

At station CI.LJR, dv/v decreased more than 1% following a set of storms on December 27th-29th,

January 2nd-4th, and January 7th-11th and more than 0.85% following a single storm on February

17th-23rd. Theses dv/v decrease are similar in amplitude to the dv/v decrease Sens-Schönfelder and

Wegler 230 measured for a 40 m increase in groundwater level at Merapi volcano, Indonesia. Similar

decreases in dv/v have been recorded at close distances to large earthquakes181, though we rule out

earthquakes as a cause, as noMw > 6 earthquakes occurred within 1,000 km of CI.LJR fromOc-

tober 2004 toMay 2005. The increase in storage in the Los Angeles Basin after winter 2004-2005

was ΔS ≈ 2m, assuming a basin-wide specific yield Sy = 0.15. This was 5× greater than the 30

cm storage change measured by GRACE in the same time-frame averaged over the Los Angeles re-

gion. Previously, Clements and Denolle 58 estimated that 0.5 km3 of groundwater was lost during

the drought in the San Gabriel Basin from 2012-2016. The undrained poroelastic response to this

deluge is the most likely mechanism for the decrease in dv/v at shallow depths during this time, as

shown in Chapter 4. At greater depths though, the drained poroelastic response is expected to dom-

inate207,276.
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(a) (b)

Figure 5.2: Changes in GRACE Liquid Water Equivalent and dv/v across California in 2‐4 Hz frequency band. (a) Change
in dv/v measured between January 2005 and May 2005 (scatter points) and GRACE LWE (shading) over the same time
frame. (b) Change in dv/v and GRACE LWE between September 2011 and September 2016.

Following the precipitous drop in dv/v in the winter of 2004-2005, dv/v steadily increased 2.5%

from 2005-2017. This period contained two major droughts, the first from 2007-2009 and the sec-

ond 2012-2016. The long-term increase in dv/v from 2005-2017 was controlled by the lack of sig-

nificant storms - years with less precipitation from large storms (wettest 10% of days mentioned

in Chapter 4 Section 2.1 had smaller decreases in dv/v between October andMay than years with

fewer large storms (correlation coefficient = 0.93). Similarly, summertime increases in velocity were

greater after years with larger amounts of precipitation than drought years, suggesting that summer-

time increases in velocity are modulated by discharge and not temperature. As seen in Figure 5.3A,

seasonality in dv/vwas greatly reduced during the drought, as compared to before and after. A short

atmospheric river in 2017 brought much needed rain to Southern California288 but represented

only a brief interlude in the long-term increase in dv/v at CI.LJR since 2005. dv/v at CI.LJR remains

stabilized at its 2016 end-of-drought level from 2017-now.
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(a) (b)

(c) (d)

Figure 5.3: Representative dv/v time series. (a) dv/v at CI.NJQ compared with surface level of nearby Alisal Reservoir
and stream flow from Alisal creek. (b) dv/v at CI.RXH and elevation of the Salton Sea. Dashed vertical lines are timing of
nearby earthquakes. (c) dv/v and surface temperature change at CI.SAL. Dashed line indicates timing of 2010 Mw 7.2
Baja Earthquake. (d) dv/v at CI.WES, groundwater level at USGS well 324603115480501 and root‐mean‐square E‐N
displacement at GPS station P494 after 2010Mw 7.2 Baja Earthquake.

dv/v is strongly correlated with seasonal temperature change in dry areas such as the Mojave

desert, with the lone exception of the drying of the Salton Sea. At station CI.RXH, which is lo-

cated 100 m inland from the southeast edge of the Salton Sea, dv/v has been steadily increasing since

2005 as the sea levels have dropped more than 2 m, as shown in Figure 5.3B. Station CI.SAL in

Salton City, as shown in Figure 5.3C, exemplifies the near perfect sinusoidal change in dv/vmodu-

lated by thermoelastic strain induced by atmospheric temperature changes20. We do not observe any

long-term trends in dv/v due to thermoelastic strain, though extreme temperatures were thought to

account for up 25% of the drought’s moisture deficit.
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In California’s inland areas,Mw > 6 earthquakes occur on average once every three years. Earth-

quakes complicate groundwater monitoring using dv/v - strong ground motion during earthquakes

is thought to open cracks in the near surface and allow for increased groundwater flow213,38, which

decreases seismic velocities185,217. Large drops in dv/v due to earthquakes look similar to rapid

recharge events. Cross-comparison of dv/v drops to earthquake catalogs and groundwater prox-

ies can rectify groundwater vs seismic causation. In the case of CI.RXH, the 2005 Obsidian Butte

swarmmasked an increase in water level in the Salton Sea148, as shown in Figure 5.3B. In the Impe-

rial Valley, dv/v at station CI.WES decreased 2.5%, while CI.SAL sawmore modest 0.3% drop in

dv/v, following the 2010 Baja earthquake. TheMw7.1 2019 Ridgecrest earthquake was the largest

earthquake in the last 20 years in the state of California - though noticeable drops in velocity are

only seen within 25 km of the epicenter31.

4 Conclusions

Wemeasured relative seismic velocity changes, dv/v across California using single-station cross-

correlations from 1999-2021. dv/v time series in the 2-4 Hz frequency have remarkable sensitivity

to near-surface changes. The dominant signal in dv/v in California since 1999 is a long-term increase

in velocity due to receding groundwater levels, punctuated by drops in velocity from recharge from

large storms. This temporal pattern is most coherent in Southern California’s coastal basins. We an-

ticipate that future changes in seismic velocity in California will be modulated by swings between

floods and droughts.
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6
Earthquake Detection at the Edge

The Edge...There is no honest way to explain it

because the only people who really know where it is

are the ones who have gone over.

Dr. Hunter S. Thompson
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Earthquake detection is the critical first step in Earthquake Early Warning (EEW) systems. For ro-

bust EEW systems, detection accuracy, detection latency and sensor density are critical to providing

real-time earthquake alerts. Traditional EEW systems use fixed sensor networks or, more recently,

networks of mobile phones equipped with micro-electromechanical systems (MEMS) accelerome-

ters. Internet of things (IoT) edge devices, with built-in machine learning (ML) capable microcon-

trollers, and always-on, always internet-connected, stationary MEMS accelerometers provide the

opportunity to deployML-based earthquake detection and warning using a single-station approach

at a global scale. Here, we test and evaluate deep learningML algorithms for earthquake detection

on Arduino Cortex M4microcontrollers. We show the trade-offs between detection accuracy and

latency on resource-constrained microcontrollers for possible use as edge-connected seismometers.

1 Earthquake Detection

Earthquake detection is the process of picking earthquake signals from a continuous stream of

recorded ground velocity or acceleration measurements. Most often this is in the form of distin-

guishing P (primary) waves and S (shear) waves from seismic noise and other anthropogenic signals,

such as quarry or mine blasts, nuclear tests, machinery or transportation. The goal of earthquake

detection is to detect seismic events with low and high signal-to-noise (SNR) in a computationally

efficient manner. Due to the exponentially increasing volume of seismic data collected each year,

earthquake detection in real time necessarily must be automatic.

Since the first attempt at automated earthquake detection 40 years ago with single trace detec-

tion on microprocessors13, numerous techniques have been developed. The short-term average

over long-term average (STA/LTA) technique, where an event detection is triggered when the ra-

tio of short-term average (few seconds) of seismic amplitude to long-term average (≈ 10 seconds)

of seismic amplitude is above an arbitrary threshold, is the most widely-used automated algorithm
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for earthquake detection11. Template detection, which relies on the correlation of known seismic

events to detect new seismic events, can detect earthquake signals at lower SNR levels than the

STA/LTAmethod but is computationally unfeasible for real-time use93. Fingerprint detection,

which detects earthquakes using an unsupervised data mining approach, is faster than template de-

tection296 but does scale well for real-time use nor is it memory efficient.

Figure 6.1: Velocity time‐series of seismic event recorded on the East‐West (E), North‐South (N) and Vertical (Z) com‐
ponents of a three‐component high‐gain broadband seismometer. Red and blue bars and vertical lines denote the
two‐second window and exact arrival time of P‐wave and S‐wave, respectively.

1.1 Earthquake Detection usingMachine Learning

Machine learning is an increasing popular approach to automate earthquake detection. Earthquake

detection is one of the few applications in seismology to allow for supervised learning, where an

algorithm learns a function to map known inputs to outputs23. The first attempts ML for earth-

quake detection used artificial neural networks on engineered features, such as spectrogram and

STA/LTA122 or power spectral density150 features to detect earthquake arrivals. More recently, the

MyShake platform used a single-layer ANNwith three features (interquartile range between the
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25th and 75th percentile of the acceleration , the zero crossing rate, and the cumulative absolute

velocity) to distinguish between earthquakes and human activity recorded on smart phones133.

Convolutional neural networks (CNN) offer a huge leap forward in the power of ML-based

earthquake detection. CNNs enable a shift away from earthquake detection based on amplitudes or

similarity to previous recorded signals and toward generalized earthquake detection. Convolution-

based detection is faster and more memory efficient than fingerprint or template detection and more

accurate at lower SNR levels than STA/LTAmethods191,214. Convolutional and recurrent neu-

ral networks (RNN) are now used for P-wave polarity picking215, earthquake magnitude estima-

tion167, and phase picking, which determines the exact arrival time of a particular seismic phase215.

To achieve higher accuracy, CNN earthquake detection networks tend to get deeper. The current

state-of-the-art earthquake detection algorithms use deep residual network of convolutional and

recurrent units168 or transformer networks170 to achieve 99% detection accuracy.

2 TinyML:Machine Learning at the Edge

TinyMachine Learning (TinyML) reverses the recent trends in ML to train and deploy larger and

larger models on massive cloud servers. Instead, with TinyML, inference is performed on mil-

lions of compute and memory-constrained devices at the edge, where memory, compute and en-

ergy constraints are just as important as accuracy281. We define the edge as any networked loca-

tion between the point of data collection and cloud servers235. Micro-controllers used for TinyML

have 100-1,000x less compute capability, memory availability or energy consumption than mobile

phones, which leads to an emphasis on model and design efficiency61. Recent advances in deploying

TinyML workflows to the edge include speech detection277,302,280,14,231, arrhythmia detection83,

and computer vision tasks51.

PerformingML tasks on compute-constrainedMCUs is very similar to previous on-site earth-
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quake detection methods using neural networks32 or filter-banks159, along with deep learning earth-

quake detection methods122. While earthquake detection has been deployed and run on mobile

phones with success, in the form of the MyShake seismic network133 and Android phones, the

widespread availability of always-on, always-connected IoT devices with ML capabilities could al-

low for a ”true onsite approach, where a seismometer is installed at the user’s location and provides

a warning at that location, removes these telemetry delays, but with increased probability of false or

missed alarms”12. Fixed IoT devices additionally give greater guarantees for network stability over

smart phones at the expense of limited RAM and compute capabilities. Here, we create a proof of

concept for ML-based earthquake detection on an Arduino Nano 33 BLE board with 256 KB of

SRAM and 1MB flash storage.

3 Data

Figure 6.2: Locations of sensors used in this study. Blue triangles represent sensors providing earthquake and/or noise
waveforms, whereas red triangles represent sensors providing only noise data.

To develop and test earthquake detection at the edge, we use a subset of the Stanford EArth-

quake Dataset (STEAD)169 for training of deep neural networks (DNN). STEAD is a high-quality,
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global dataset of containing labelled earthquake signals (P-wave and S-wave) and seismic noise. Data

is stored as sixty-second three-channel (East-West, North-South and Vertical) traces sampled at 100

Hz recorded on a range of different seismometers. STEAD provides numerous metadata for each

event and sensor, including event magnitude, event-sensor distance, P-wave and S-wave arrival times,

event SNR, etc..

To construct our training dataset, we use earthquakes recorded on all station types (HH, BH,

EH, etc..), with all event types (strike-slip, thrust and normal), and all event depths. We select earth-

quakes with source to station distances less than 100 km, which while likely larger than the maxi-

mum detection distance for MEMS accelerometer, as MyShake-enabled phones reliably detect earth-

quakes 10 km away133, is reasonable for training. We reject all earthquakes where P and S waves

arrive are within 0.2 seconds of each other. We select earthquakes with SNR> 40 dB and detection

threshold above 0.5, as found by169.

We split the training and test data by time using an 80/20 split. The training set is all noise, P-

wave and S-wave events meeting the previous criteria before May 10, 2017, whereas the test set is

similarly all noise, P-wave and S-wave events meeting the previous criteria after May, 10, 2017 in

the STEAD dataset. The training and testing sets contain 250,980 and 62,748 two-second three-

channel windows, respectively. We then balance the training and testing data such that they each

contain 50% noise, 25% P waves and 25% S waves.

3.1 Processing andData Augmentation

We apply very simple pre-processing workflow to mimic data as it is collected on-device with a

MEMS accelerometer. For P-wave, S-wave and noise time waveforms alike, we read each three-

channel 60 second window at 100Hz into a 60,000x3 tensor. Velocity waveforms are then converted

to acceleration using a Fourier derivative. We then detrend, taper, and filter each channel between

2.0 and 20 Hz using a causal bandpass filter. We then select a two second window around each event
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Figure 6.3: Representative two‐second windows of the vertical component of noise, P‐wave, and S‐wave, respectively,
after pre‐processing.

pick (1 second before and 1 second after P-wave or S-wave arrival time), or randomly within the 60

second window for noise. Data are then resampled to 40 Hz, leaving an 80x3 tensor for each earth-

quake or noise.

Before training, we augment earthquake data by 1) shifting data randomly around the event pick

up to 0.8 seconds 2) normalizing data to zero mean and unit standard deviation 3) randomly setting

amplitude of 1 or 2 channels to zero with 0.3 probability 4) randomly scaling amplitude of channels

with probability 0.3 and 5) adding Gaussian white noise. For noise data, we apply steps 2), 3) and 4)

as before for P-wave and S-waves.

4 Models for Tiny Earthquake Detection

We create a suite of simple and small model architectures, focusing on a selection of those men-

tioned in Zhang et al. 302 , namely Deep Neural Networks (DNN), Convolutional Neural Networks
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(CNN), and Depthwise-Separable Convolutional Neural Networks (DS-CNN), to test which net-

work style is most accurate and efficient at detecting earthquakes. We did not test long short-term

memory (LSTM) or gated recurrent unit (GRU)-based recurrent neural network (RNN) models as

these types of networks are not available in the TensorFlow Lite Micro at the time of writing (De-

cember 2020). All models are created within the SRAM and Flash constraints of 256 KB and 1MB,

respectively, and a maximum desired model invoke time of 0.1 seconds, or 10 inferences per second.

This latency threshold was chosen to minimize the time between earthquake detection and alert,

which is vital for real-time EEW, while still allowing fairly complex models. The input to all three

types of models is a 1x80x3x1 tensor, similar in shape to a tall and narrow RGB image.

All models were trained with the Keras framework with TensorFlow 2.3.0 as a backend on an

Nvidia 1070Ti GPU1. Models were trained with the Adam optimizer, categorical crossentropy

as the loss function, and with the default learning rate of 0.001. Validation data for training was

chosen as a random 20% split from the training set, which represents 16% of the total dataset. We

train each model with a batch size of 256 for 100 epochs.

4.1 Deep Neural Network (DNN)

Figure 6.4: Model architecture for Deep Neural Network with two fully‐connected layers of varying size and one output
layer.

Deep neural networks (DNN) are a type of feedforward neural networks containing fully-connected

layers. While able to generalize non-linear relationships, DNNs notably ignore the temporal rela-

tionship between inputs, which limits their effectiveness for time-series classification tasks302. We

flatten the input to each DNNmodel from a 4D tensor into a 240x1 array. We then run the 1D flat-

ten through two fully-connected layers, each containing n neurons varying in size from 23 to 27 in
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powers of two, followed by rectified linear unit (ReLU) activation functions. Each fully-connected

layer is followed by a dropout layer with rate 0.1. The output layer is a fully-connected layer with

three neurons with softmax activation, which gives the normalized probability, between 0 and 1,

that the input is a P-wave, S-wave, or noise.

4.2 Convolutional Neural Network (CNN)

Figure 6.5: Model architecture for Convolutional Neural Network with two convolutional layers of varying number of
channels.

While DNNmodels ignore temporal relationship between inputs, Convolutional Neural Net-

works (CNN) use a series of small convolutional filters to extract local to high-level temporal pat-

terns in time-series input302. CNNmodels have far fewer trainable parameters than DNN at the ex-

pense of higher computational cost191. We create a suite of models with two 3x1 convolution layers

and ReLu activation with number of channels varying from 21 to 28 in powers of two. Each con-

volutional layer is followed by a max pooling layer with pool size 3x1 and a dropout layer with rate

= 0.1. The convolutional layers are followed by a fully-connected layer with 16 neurons and ReLu

activation and finally with a three neuron fully-connected output layer with softmax activation.

4.3 Depthwise-Separable Convolutional Neural Network (DS-CNN)

Depthwise-Separable Convolution Neural Networks (DS-CNN), use spatial convolutions indepen-

dently over each channel, followed by a pointwise (1x1) convolution in the depth dimension, rather

than a standard 2D convolution. DS layers are often used to reduce the number of parameters and

thus execution time of CNNmodels49,302. Similar to our CCN suite of models, we create a suite of
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DS-CNNmodels with two 3x1 convolution layers and ReLu activation with number of depth mul-

tipliers per DS layer varying from 2 to 8. All other layers and parameters are the same as the CNN

models mentioned previously.

Figure 6.6: Model architecture for Depthwise‐Separable Convolutional Neural Network with two DS‐CNN layers of
varying size.

5 Results

Our most relevant criteria for evaluating models are accuracy and latency. We set a maximum

latency of 10 ms an an acceptable threshold for all models, as was chosen by84 for a speech en-

hancement application. For comparison, this is 20x less latency than the median alert latency of

the MyShake network for≈M5 earthquakes246. We evaluate the accuracy of each model on the test

set of earthquake and noise data of 62,748 windows recorded after May 10, 2017. The output of

each model is a 3x1 tensor giving the probability that the input window is noise, P-wave or S-wave,

respectively. We classify an model output as noise, P-wave or S-wave based on the maximum prob-

ability. We test for latency by measuring the invocation time (to within one millisecond) for each

model on an Arduino Nano 33 BLE board with a single Cortex-M4 CPU running at 64MHz using

Arduino TensorFlowLite version 2.1.0-ALPHA.

As shown in Fig. 6.7, DNNmodels have the both the lowest latency and accuracy, whereas

CNNmodels have the highest accuracy (92%) and latency (up to 2 seconds). DS-CNNmodels rep-

resent a mid-point between DNN and CNN, models in terms of accuracy and latency. For similar

numbers of trainable parameters, CNNmodels have slightly higher accuracy than DS-CNN and far

greater accuracy than DNNmodels, as shown in Fig. 6.8. The least accurate CNN and DS-CNN
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Figure 6.7: Accuracy vs. latency trade‐off curve for suite of fully‐connected (DNN), convolutional (CNN) and depthwise‐
separable convolutional (DS‐CNN) models. Gray dashed line is cutoff for acceptable models, shown at latency of 0.1
seconds or 10 inferences per second.

models attain similar accuracy to the highest performing DNNmodel with 10-100x less trainable

parameters, showing their efficient detection ability.

We test a range of minimum detection probability thresholds for P and S wave detection. Fig. 6.9

shows the precision-recall for a range of minimum probability thresholds between 0.4 and 0.99. We

define precision and recall scores as

Precision =
tp

tp+ fp
, Recall =

tp
tp+ fn

(6.1)
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Figure 6.8: Accuracy vs. number of trainable parameters trade‐off curve for suite of fully‐connected (DNN), convolu‐
tional (CNN) and depthwise‐separable convolutional (DS‐CNN) models.

where tp is the number of true positives, fp is the number of false positives, and fn is the number

of false negatives, for a given minimum probability threshold. We find that classification accuracy is

maximized for a minimum P-wave and S-wave detection threshold of 0.49. Any P-wave or S-wave

with model probability less than this threshold is incorrectly classified as noise.

6 Discussion

Earthquake detection is the first step to most workflows in observational seismology. In that con-

text, detection accuracy is vitally important to subsequent scientific analysis. Our best performing
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Figure 6.9: Precision vs recall trade‐off curve for highest performing convolutional model on test data set. Colorbar de‐
notes probability threshold above which test data is classified as P‐wave or S‐wave. Horizontal dashed line at precision
= 0.25 is threshold for which network has no skill, as P‐waves and S‐waves both represent 25% of the test set.

model has a detection accuracy about 8% lower than vastly larger models trained to run large graph-

ical processing units (GPU), which have accuracy around 99%214,170. This is likely due to our sim-

plified training set, as our precision-recall values are much lower than larger networks. As shown in

Fig. 6.10, our most commonmisclassification errors are classifying P-waves as S-waves and S-waves

as noise. We do a very good job of differentiating P-waves from noise, which is vital for real-time

EEW162.

The difficulty of earthquake detection on the edge is the trade-off between accuracy and latency.

As shown in Fig. 6.7, we can tune models to be either low-latency and high-accuracy based on archi-
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Figure 6.10: Normalized confusion matrix for highest performing convolutional model on test data set (N = 62, 748).
Total number of P‐wave, S‐wave, and noise samples are 15,687, 15,687 and 31,374, respectively. Upper‐right value has
been rounded from 0.004 to 0. for display purposes.

tecture. If earthquake detection at the edge is used in an EEW context, the choice between latency

and accuracy depends on the user’s tolerance for false alerts. Users who are false-alert-tolerant can

choose to receive many false alerts but desire receive timely alerts for all levels of ground motion

by choosing a low-latency CNNmodel162,163. If the application is insensitive to latency, such as

building an earthquake catalog or cataloging spatial variations in peak ground velocity, we can create

larger and deeper models, which have longer inference times and hopefully greater detection capac-

ity124.

6.1 How to use system

Details for replicating figures, preprocessing the data, training models and testing the results on de-

vice in this manuscript are available on Github. Since the STanford EArthquake Dataset (STEAD)

is quite large at around 90 GB, a smaller subset of test data is provided.
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6.2 Ethical AI

While no human data was used in this dataset, seismometers can passively monitor the movement of

humans at the scale of neighborhoods or cities141. In terms of bias, the location of earthquakes and

sensors used in this study are highly skewed to those in the United States and Europe, which main-

tain most of the seismic networks globally but do not have the majority of earthquakes. Creating a

global network of IoT seismometers could ameliorate this bias, as one of the limitations to installing

seismic sensors is the significant cost of seismic sensors and telemetry equipment.

Calculating the location of an earthquake is only possible if each sensor in a seismic network

meets two conditions: 1) the location of each sensor is precisely known and 2) all sensors are synced

to UTC. These requirements almost always necessitate GPS for location and timing. The use of

GPS combined with accelerometer data is a potential privacy concern for IoT devices installed in

a home. If IoT sensor location data and accerometer data are shared publicly, theoretically, one

could know the location and movements, such as garage doors opening, doors shutting, etc.., of a

household. While again this is theoretically possible, the fixed nature of most IoT devices gives more

privacy than current mobile phone-based seismic systems, which have the potential to track not only

a person’s physical location andmovements throughout the day. In this way, moving earthquake

detection frommobile phones to IoT devices should give end users greater autonomy and privacy.

7 Conclusions and Future Directions

Earthquake detection is a broad starting point for many application from earthquake early warn-

ing to the study of fault zone structure. Here, we showed that earthquake detection is feasible on a

memory and compute-constrained microcontroller within a latency threshold of 10 ms with 92%

accuracy. For EEW applications, for which this application shows great promise, more work is re-

quired, particularly in the task of converting earthquake detection to ground motion or shaking
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intensity. While Mousavi et al., 2020 have developed neural networks for estimating earthquake

magnitudes from ground motion, predicting peak ground motion from small windows of ground

velocity after P-wave arrival is not likely deterministic170,266.

Directions for future work include creating deeper models based on the insights learned here. In-

ference latency could be further reduced by applying quantization to model layers and weights135.

Testing models that are either fully or partially include recurrent layers could improve accuracy, as

state-of-the-art models for earthquake detection170,168 on large GPU-servers and speech detection

on microcontrollers231 include RNNs. Applying neural architecture search (NAS) could find earth-

quake detection architectures that are both high-accuracy and low-latency146,17. There is much to

do in the TinyML-earthquake detection space.
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7
Conclusions

A painting is not a picture of an experience;

it is an experience.

Mark Rothko

In this dissertation, I have shown that measuring the change in seismic velocity, dv/v from the

cross-correlation of ambient seismic waves recorded on a seismic network or with just a single seis-

mic is akin to measuring groundwater levels using a single monitoring well. In addition, I have de-
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veloped a framework for efficiently computing ambient noise cross-correlation functions on both

the CPU and GPU using the computing language Julia and methods for processing seismic data on

the cloud and at the edge. In chapter 2, I showed that dv/v tracked long-term trends in groundwa-

ter level due to drought and flood in the San Gabriel Valley, CA. Using dv/v I was able to accurately

measure the loss in groundwater storage in the San Gabriel Valley during the most recent drought.

In chapter 3, I developed a framework for accelerating cross-correlations using high-performance

computing resources in the computing language Julia. With my Julia-language framework, I was

able to handle computational workloads that previously required high-performance resources us-

ing only desktop resources. In chapter 4, I developed a methodology and theory for single-station

groundwater monitoring. I showed that seismometers are sensitive to volumetric strains caused by

changes in groundwater levels. I also suggest that groundwater levels could control near-surface

changes in attenuation. In chapter 5, I applied the computational framework developed in chapter

3 and the methodology developed in chapter 4 to compute dv/v for every broadband seismometer

in California over the last two decades. I showed that over the past two decades, seismic velocities

in Southern California are increasing and are controlled by a reduction in precipitation from at-

mospheric rivers, which lead to long-lasting droughts. Finally, in chapter 6 I applied tiny machine

learning to earthquake detection. I showed that earthquake detection is feasible using inexpensive,

compute-constrained Internet-of-Things (IoT) devices, which opens the possibility for a future IoT

seismic network with billions of devices.
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